新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 数字升压型功率因数校正转换器的分析与设计

数字升压型功率因数校正转换器的分析与设计

作者:李栩 时间:2015-08-06 来源:电子产品世界 收藏
编者按:本文以升压型转换器为AC-DC功率因数校正整流器的基本结构,控制核心采用DsPIC30F4011数字信号处理器,利用主动式功率因数校正技术的平均电流控制法,提高功率因数,减少输入电流谐波。为避免高功率因数转换器电压回路系统的带宽限制,额外加入负载电流以改善负载变动时输出电压的暂态响应。详细分析转换器、系统建模及控制器设计,开发一个450W的数字升压型功率因数校正转换器,通过试验验证转换器的高功率因数性能及输入电压幅值变动和负载变动时,输出电压的稳压性能。

 为实现数字控制,将控制器传递函数转换成离散时间状态的空间表示式,在取样频率为6kHz下,得到电流控制器为:

本文引用地址:https://www.eepw.com.cn/article/277712.htm

(25)

(26)

  同样地,在取样频率为2kHz下,可得电压控制器离散状态空间表示为:

(27)

(28)

  在外回路电压控制器设计上,为减少控制器信号与乘法器信号受120Hz输出电压的影响,降低了功率因数的性能,所以外回路系统的频宽通常设计在10Hz~20Hz之间。因此,在时,输出电压很难恢复至稳压状态。本文利用负载电流注入法将负载电流状态作为控制反馈,以改善输出电压的暂态响应。负载电流注入法是将负载电流接入控制回路,当负载发生变动时,立刻产生稳态输入电流的参考信号,改善外回路电压控制器缓慢的动态响应。

4 数字控制系统试验验证

  以16位DsPIC30F4011为基础,完成数字控制高功率因数升压型转换器的设计。在试验验证过程中,输入电压90~130 Vrms、输出电压312 V、最大输出功率450 W的高功率因数升压型AC/DC转换器。试验测量结果如下:

  图9为输入电压110Vrms、输出功率450W时,输入电压Vin和电流iin的实际波型,利用万用表测量的功率因数值为0.968,说明了该设计系统的高功率因数特性。

  随后,对系统输出电压的稳压性能进行测试,针对输入电压从110 V变动到130 V,再从110 V变到90 V,输出的电压响应如图10(a)。当负载从250 W变动到450 W时,输出的电压响应如图10(b)。当额外加入负载电流且同时发生时,输出的电压响应如图10(c)。比较图10(b)和10(c),图10(c)的输出电压变动较小时,负载电流注入法具有较高的稳压效果。当Vin=110 Vrms时,针对不同输出功率,测得高功率因数升压型转换器的功率因数曲线如图11(a)所示,在Po=450W时,功率因数最高可达0.966。针对不同输出功率,测量高功率因数升压型转换器的效率曲线如图11(b)所示,在Po=450W时,效率最高可达92.2%。

5 结论

  本文以升压型转换器为AC/DC功率因数校正整流器的基本结构,以DsPIC30F4011为控制核心,应用主动式功率因数校正技术的,使平均输入电流随输入电压波形变化,以提高功率因数性能。利用负载电流注入控制法,改善输出电压动态响应较慢的缺点。最后设计输出功率为450W的高功率因数升压型转换器并进行试验,试验结果表明,该功率因数升压型转换器符合电流谐波的高功率因数特性,并且在输入电压幅值变动及时,输出具有良好的稳压特性。

参考文献:

  [1]周志敏, 周纪海. 开关电源功率因数校正电路设计与应用[M]. 北京: 人民邮电出版社出版, 2004

  [2]宗凡. Boost APFC电路的设计与实现[D]. 西安: 西北工业大学, 2006

  [3]王志强等译. Abraham I. Pressman著. 开关电源设计[M]. 北京: 电子工业出版社, 2005

  [4]E. Figures, J.M Benavent, G. Garcer’a, M. Pascual. A control circuit with load-current injection for single-phase power-factor-correction rectifiers[J]. IEEE Trans. Industrial Electronics, 2007, (54):1272-1281

  [5]A.J Prodic, R.W. Chen, Erikson, D. Maksimovic. Digitally controlled low-harmonic rectifier having fast dynamic response[C]. IEEE APEC, 2002, 476-482

  [6]S. Buso, P. Mattavelli, L. Rossetto, G. Spiazzi. Simple digital control improving dynamic performance of power factor preregulators[J]. IEEE Trans. Power Electronics, 1998, 13(5): 814-823

  [7]M.G. Villalva, J.R. Gazoli, E.R. Filho. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays [J]. IEEE Transactions on Power Electronics, 2009, 24(5): 1198-2008

  [8]L. Fangrui, D. Shanxu, L. Fei, L. Bangyin, K. Yong. A Variable Step Size INC MPPT Method for PV Systems [J]. IEEE Transactions on Industrial Electronics, 2008, (55): 2622-28

  [9]R.W. Erickson, D. Maksimovic. Fundamentals of power electronics[M]. Kluwer Academic Publishers, 2001, Second Edition

  [10]J.L. Lin, C.Y. Chen, Y.K. Wang. AC/DC converter analysis based on LFR model[C]. Proceeding of Taiwan Power Electronics Conference. 2006, 1015-1020

交换机相关文章:交换机工作原理


电子负载相关文章:电子负载原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭