新闻中心

EEPW首页 > 医疗电子 > 设计应用 > 采用可编程SoC设计心率监控器

采用可编程SoC设计心率监控器

作者: 时间:2015-03-12 来源:网络 收藏

  心率监测中的光电容积脉搏波技术

本文引用地址:https://www.eepw.com.cn/article/270927.htm

  根据心跳速率,通过指尖或耳垂的血流量会有所不同。因此,我们需要某种机制来检测血流量的变化,从而确定心脏跳动的速率。

  监控心率最常用的方法之一就是采用内置IR发射器和接收器的光学收发器。当红外线等光辐射通过手指或耳垂血管时,从手指或耳垂处接收到的信号具有周期性,并根据血液流动节律和血液的吸收性而发生变化。(在一般情况下,人体血液能轻松反射射入的红外线光波。)这种方法称为光电容积脉搏波[5].

  光电容积脉搏波有两种类型:传输法与反射法,且均采用基于光感应位置的红外波。

  类型一:红外反射法

  采用IR LED和光电二极管/光电晶体管的众多红外收发器芯片,可在市场上满足系统的要求[3],而光电二极管/光电晶体管的传导则根据反射到其上的光量不同而产生变化。

  假定IR LED的激励源为常量。当红外收发器放置位置的血流量发生改变时,反射回来的光量也会发生变化。这种光学收发器的输出变化将心跳转化到电子领域中,这就需要经过信号调节过程。最后,我们还需要采用数字逻辑来计算每分钟的脉搏次数,进而得出以bpm(每分钟心跳数)为单位的心率。

  

 

  图1:红外反射法

  类型二:红外传输法

  当选择手指作为心跳测量的来源时,那么红外反射法往往就是最好的选择。但是,这种方法对在耳垂位置放置类似的器件并不适合。因此,我们必须在耳垂上采用夹子类的装置将放置在固定位置,例如放置在口袋中。在此情况下,夹子的一端连接耳垂,能持续获得IR LED,而夹子另一端(在耳垂的另一端)则能控制光电二极管/光电晶体管。这样,当红外收发器在连接耳朵处的血流量增加时,光电晶体管接收到的光量就会减少(即,与反射法的行为相反)。

  

 

  图2:红外传输法

  设计要求

  1.红外发射器包括能持续发射特定波长的红外波的IR LED.

  2.红外接收器包含光电晶体管,其基极-发射极电压(Vbe)根据其获得的光量而发生变化。要检测Vbe的变化,光电晶体管的集电极需要通过电阻将电压拉至5V(如图3所示)。[6]

  3.由于红外接收器输出的变化相对于血流量的变化而言非常小(大约介于50-70uV之间,具体取决于所用的二极管晶体管对),因此需要放大信号,使其达到可测量的电压范围(近似V的水平)。所以,放大器增益必须为50,000的水平,才能让电压达到可测量的范围。

  

 

  图3:红外发射器/接收器

  4.设计这种设备时需要考虑各种可能的噪声源,包括测量(即身体接触)噪声、肌电图(EMG)噪声(肌肉收缩)和运动影响(身体运动时常见的情况)。这些高频来源的噪声必须使用一阶或二阶低通滤波器来进行消除。因此,应用需要二阶低通滤波器。考虑到放大级,我们认为需要两级放大器和二阶低通滤波器。

  5.如前所述,获得50,000的增益需要级联两个增益分别为250和200的放大器。因此,两个运算放大器可用来设计一个二阶低通滤波器,总增益可达50,000.

  最后,要生成方波列,计算脉搏数量,我们需要将两级放大器的输出馈送给具有适当阈值的比较器。请注意,该适当阈值取决于所用的红外发射器和接收器。

  现在,比较器能生成一系列与心跳相同周期的脉冲。我们要把该输出馈送至数字模块或MCU(微控制器单元),从而计算每分钟脉搏数,并在LCD上显示所得到的输出。此外,MCU还要存储身高体重等个人数据,从而能够计算消耗的卡路里。

  从上面的描述中我们可以看到,我们需要:

  1.心率传感器(红外二级管和光电晶体管对)。

  2.3个外部运算放大器:2个用于滤波和放大级,另一个用作比较器。

  3.1个MCU,可计算心率和消耗的卡路里,并控制显示器单元(段式LCD)。如果MCU不能直接驱动段式LCD,那么还需要采用外部芯片。

  4.1个段式LCD,用以显示心率和消耗的卡路里。

  因此,我们需要一个芯片进行心率感应,3个外部运算放大器、1个MCU、1个芯片来连接带段式LCD的MCU以及一个段式LCD.赛普拉斯推出的 4等单部低成本可编程片上系统可取代本应用中所需的运算放大器以及MCU和LCD接口。这种可编程片上系统设有低功耗ARM Cortex-M0内核,并完美结合可编程混合信号硬件IP,能提供灵活的可扩展低功耗混合信号架构,从而充分满足这种应用类型的模拟I/O、信号处理和实时计算要求。



关键词: PSoC 心率监控器

评论


相关推荐

技术专区

关闭