用于高压、高容量电池系统的低成本 isoSPI 耦合电路
编者按: 摘要:本文介绍了一种采用 AC 耦合方法可以减轻高压 isoSPI 系统的成本问题,无需要求磁性元件提供双重绝缘。用价格不贵、缠绕在绕线管上的共模扼流圈 (CMC) 组件取代专门的螺旋管型变压器磁性元件,进一步降低成本。电容器和 CMC 都是相对扁平的表面贴装芯片组件,价格富有竞争力,而且其高可靠性经过审查,可用于汽车系统。用于 AC 耦合的偏置电阻器为监视系统的电介质完整性提供了一种非常有用的途径。
内置到 LTC6804 电池组监视器中的 isoSPI功能与 LTC6820 isoSPI 通
完整电路
本文引用地址:https://www.eepw.com.cn/article/267436.htm 图4显示了采用 L-C 解决方案和以 CMC 为变压器的完整电路。既然通常的 isoSPI 应用包括非常有益的 CMC 滤波部分 (采用标准 LAN 组件时,这部分是集成在内的),所以图 4 电路包括一个建议采用的分立式组件,以保留滤波功能。耦合电容器是 10nF 至 33nF 的高质量组件,占板面积为 1812 SMT (额定值为 630V 或 1kV)。这里我们假定,LTC6820 以机架地电位工作,以使双绞线的偏置处于安全水平。
当双绞线对的两个端子都处于浮置地电位时,如同菊花链式连接的 LTC6804-1 模块之间的链路那样,就可以在链路的两个端子上使用电容器,线对本身也可以通过连接到每条线上的高阻值电阻器偏置到“地”电位,如图 5 所示。因为图中电容器是串联的,那么建议至少使用 22nF 电容器 (图中所示为 33nF/630V)。
在同一块电路板上以菊花链方式连接的 LTC6804-1 之间的链路不需要任何电容器耦合,因为其电位通常 <50V,而且由于没有电缆,进入的噪声小得多,所以常常仅需要单个变压器 (图 6)。
高压布局
印刷电路板布局应该跨主要电解质势垒 (即电容器) 设置很宽的隔离间隔。图 7 显示了一种组件布局实例,图中电路可提供良好的高压性能,蓝色区域代表机架地 (左边具备双绞线连接器) 和 IC 公共接口 (右边)。
变压器相关文章:变压器原理
电容器相关文章:电容器原理
电路相关文章:电路分析基础
可控硅相关文章:可控硅工作原理
比较器相关文章:比较器工作原理
电容相关文章:电容原理 漏电开关相关文章:漏电开关原理
评论