构建更加智能的电能计量系统
上述三种情况下,差分电压均为0V,然而,RS-485规范定义0V是不确定电压。这意味着接收器输出可以是高电平,也可以是低电平,甚至在高电平和低电平之间振荡。Maxim的失效保护接收器规定接收器阈值在-50mV和-200mV之间,从而解决了这一问题。这要比RS-485规定的阈值严格一些,因此也符合该规范。利用这一优势将0V差分电压定义为已知状态,避免了上述三种情况带来的问题。这样,电表硬件工程师可以不必采用图1所示的两个偏置电阻。
摆率限制 由于大部分电表的数据速率在1kbps和19.2kbps之间,没有必要采用很快的边沿速率,因为这样只会带来不必要的辐射。通过控制RS-485收发器驱动电路的边沿速率,可以降低高频辐射。较低摆率还降低了不恰当的终端匹配和接头产生的误码(参见图2和图3)。
图2. MAX3485E/MAX3490E/MAX3491E传输125kHz信号时驱动电路的输出波形和FFT曲线
图3. MAX3483E/MAX3488E传输125kHz信号时驱动电路的输出波形和FFT曲线
1. 收发器在已经工作的总线上首次上电。
2. 在已经工作的系统中带电插入收发器卡。
这两种情况下,驱动RS-485收发器的微控制器(μC)将重新复位。大量μC使其I/O口进入三态。一旦软件开始运行,微处理器引脚将最终配置为合适的状态。但在初始上电与引脚正确配置完成之间会出现问题,主要问题是,RS-485收发器的发送使能(DE)引脚将"看到"一个逻辑高电平。出现这一问题是由于噪声或漏电流将三态引脚上拉至高电平。Maxim的热插拔电路通过两个步骤解决这一问题。在第一个10μs期间,RS-485收发器上电,通过5kΩ电阻的600μA强下拉电流将DE引脚拉低,强下拉电流使DE引脚的所有电容放电。10μs后,采用100μA下拉电流保持逻辑低电平不受漏电流和噪声的影响。在外部电源将DE引脚拉高之前,100μA的下拉电流将一直保持有效。一旦引脚出现高电平,关闭100μA电流源,RS-485收发器正常工作(参见图4)。这一特性确保RS-485收发器的发送器为三态,避免总线竞争。 电能表相关文章:电能表原理
评论