光纤传感器相位漂移及倍频问题的解决方法
光纤传感由于具有本质安全、电绝缘性好、灵敏度高及便于连网等优点,已在许多物理量的测量中得到应用,特别是基于光纤干涉的传感系统已成为物理量检测中最为精确的系统之一。
光纤干涉仪是一种高精度测量仪器,但存在相位随机漂移及倍频等光学问题。现有文献报导中,解决的方法是采用相位生成载波技术,调制解调的实现过程复杂,并有可能产生信号波形的失真。另外,虽有采用压电陶瓷(PZT)的报导,但未见对相位随机漂移及倍频问题的具体解决方法。为此,本文给出一种简单实用的解决方案,在原理上说明其可行性,并进行了实验验证。
二、Michelson干涉型光纤传感器原理
图1所示为Michelson相位调制型光纤干涉仪结构示意图。由激光器发出的相干光经光隔离器和耦合器后一分为二分别送入2根长度基本相同的单模光纤(即干涉仪的两臂,其一为信号臂,另一参考臂),而后被反射膜反射,在耦合器的输出端发生干涉。显然,这是一种双光束干涉仪,干涉光的幅度与信号光及参考光的幅度有关,其相位为两臂光相位之差,干涉场光强分布为
I=I1+I2+2I1I2cos(Φ)=A+Bcos(Φ)(1)
Φ=2nπl/λ (2)
式(1)右端是光电转换的信号,I1、I2分别为干涉仪两臂单独存在时的光强,在检测时通常以直流项对待;2I1I2cos(Φ)表示干涉效应,当Φ=2mπ时,为干涉场的极大值,其中m为干涉级次。式(2)中,Φ为干涉仪两臂光波的相位差,它可以表示为因为环境波动引起的随机漂移信号S和待测信号N之和,由光波波长λ、光纤折射率n以及光纤两臂长度差l共同决定。在波长一定的情况下,两臂光程差改变nl,就改变了干涉信号的相位差,从而实现传感功能。
图1 Michelson光纤干涉仪的典型结构图
三、相位漂移及倍频原因简析
由式(1)可见,I随Φ呈余弦变化规律,I~Φ关系曲线如图2所示。在Φ=2nπ处为最大值(n=0,±1,±2,……),而在Φ=(2n+1π处取值最小,而在Φ=nπ+π/2处变化最快,I变化最快即表示此时干涉仪具有最高灵敏度。
图2 双光束干涉的I~θ关系图
图3 随机相位漂移引起的零漂
图4 大信号引起的倍频现象
1. PZT的光纤相位调制原理
PZT具有压电效应。当电压加在PZT筒上时,PZT筒的外径周长会发生变化,从而使缠绕在PZT筒的光纤长度及折射率随之发生变化,改变光纤内传输的光波相位。
光纤相位变化量的数学表达式为
(3)
图5 PZT筒结构
(4)
(5)
(6)
可以看到,光纤应变Δl/l与加在PZT两极的电压成正比,这是利用PZT实现光纤的相移补偿的理论基础。
2. 检测小信号的方法
当用光纤干涉仪检测非常小的信号时,两臂相位差的改变不会超过π/2,此情况下可不考虑倍频,只要解决缓变相位的漂移。我们解决的方案如图6所示。
图6 检测小信号时的相位补偿原理框架
在没有重新达到平衡之前,比较器的输出电压将会在积分回路的控制下不断的变化(积分回路起到保持电压的作用),带动光纤重新回到平衡相位。两路干涉光中,一路缠在声敏器件上用于信号检测,另外一路缠在PZT上用于相位补偿。实验光源的是输出光强的2mW的LD;PZT相位调制采用直径约25mm的PZT。
3. 检测大信号的方法
当出现大信号的待测信号时,将出现图4所示有失真的倍频现象。我们的解决方案如图7所示,相应实用电路如图8所示。电路的基本思想是利用PZT晶体的压电特性结合PID电路技术对光纤进行调制,不仅对低频相位漂移进行补偿,而且对信号引起的相位变化也同时补偿。这样将信号缓变漂移及信号倍频问题同时解决。
图7 检测大信号时的相位补偿原理框架
图8 检测大信号时实用电路
可以看到,本方案既可检测大信号,也可检测小信号,但电路较复杂。
五、实验及结果
实验装置图如图9所示,将标准压电水听器探头和光纤水听器探头置于同一声场(对声源而言位置靠近或对等)中,并将两探头的输出同时接到数字示波器上进行比对测量。考虑到桶内和振动台面的振动相差较大,故未采用在国家标准中建议的用放在振动台面上的加速度计,改用标准压电水听器(型号RAS22,715研究所制造)。频响在3Hz~1kHz范围内平坦,约为-178.5dB,灵敏度起伏0.6dB,并将其与被测光纤水听器探头同时置于校准容器(图9的金属圆桶)中。所用振动台型号为2101A,中国航天科技集团第702研究所制造。
MEMS/uploa
pid控制相关文章:pid控制原理
传感器相关文章:传感器工作原理
低通滤波器相关文章:低通滤波器原理
干涉仪相关文章:干涉仪原理
隔离器相关文章:隔离器原理 电流变送器相关文章:电流变送器原理 光纤传感器相关文章:光纤传感器原理 激光器相关文章:激光器原理
评论