数据分析在互联网金融风险管控的应用
当我们从互联网上获取到获取大量数据的时候,由于对数据本身缺乏了解,因而难以进行常规的数据分析,而探索性数据分析(EDA: Exploratory Data Analysis)能够在这种情况下,通过同用户的不断交互,不断探索,帮助我们获取到有用的相关信息。
本文引用地址:https://www.eepw.com.cn/article/233997.htm探索性数据分析是启发式、开放式和完全动态的,它以数据为基础,通过对数据的分解、过滤和计算等操作,帮助我们运用多种可视化的方法实现“让数据说话”。JMP中的交互式图形和数据管理工具是非常理想的探索性数据分析工具。更值得一提的是,即使面对的是海量数据,也不论数据中隐藏着何种信息,JMP特别的“In-memory”架构也能够非常敏捷地对指令做出反应,使数据探索过程充满乐趣。
图1:探索性数据分析
◆基于实验设计的产品设计
金融产品的风险和收益都受到诸多因素的影响,如何正确的认识这些因素,准确的度量这些因素的影响力,将为我们进行产品的设计和基于市场动态进行产品调整提供巨大的帮助。JMP 为用户提供完全析因、筛选、响应曲面和田口设计表等经典的实验设计模型。帮助用户在定义因子和响应之后,自动的进行试验模型的选择,并提供的一系列设计评估工具,例如预测方差刻画和 FDS 图,帮助用户进行模型评估,确保实验设计的正常性。此外,JMP还在构建好模型之后,通过各个刻画器,以可视方式帮助我们确定可行的操作架构和因子设定点。一旦找到最佳点,就可使用集成的 Simulator 来了解其在实践中的可靠性。
图2:实验设计刻画器
◆对于业务过程的质量过程监控
金融产品的整个过程是否合规,也是保证金融风险的重要内容。JMP 提供各种统计流程控制 (SPC) 图来有效分离普通和特殊原因,帮助我们进行各种过程分析,包括问题调查、失控状况和稳定性持续监控。控制图生成器通过拖放操作以交互方式帮助用户创建控制图,使得我们可以轻松使用不同的图表类型和分组策略来划分变异源,并确定最合适的控制策略。此外,当面临多个随机变异源时,我们还可以利用控制图生成器的互动性,实现静态控制图无法提供的方法进行性能评估。
图3:质量过程监控
◆基于客户风险等级的客户分群
通过对客户的行为特征进行分析,从中识别出风险影响因子,实现对客户的分群,这样将帮助我们更好的认识客户,从而实现更好的客户服务和产品销售。JMP提供了决策树、神经网络、分类模型等多种分类模型,帮助我们更好的进行客户分群。此外,JMP 分类平台还将分析报告同 JMP 中的数据过滤器一起使用,为用户提供各种图表的展示,为大型调查数据快速而简便的查看方法。
图4:客户分群报告
p2p机相关文章:p2p原理
评论