开关电源原理与设计(连载61)
由于单激式开关电源变压器铁芯的磁滞回线面积很小,其磁化曲线基本上可以看成一根直线,导磁率μ也可以看成是一个常数;因此,这里使用平均导磁率 来取代意义广泛的导磁率 。
从图2-18可以看出,磁场强度由H = Hz:和Hx = Hy = 0组成;对于电场强度,其指向平行于Y轴为E = Ey,Ex = Ez = 0。因此,上面两式又可以改写为:
对(2-53)式进行微分,然后代入(2-52)式,即可求得磁场强度的一维分布方程为:
由于加到变压器初级线圈两端的电压是一个直流脉冲方波,在稳定状态条件下,励磁电流产生的磁场强度或磁通密度的增长应与时间成线性关系,即:
当x = 0时,正好位于铁芯片的中心,此处的磁场强度最小,即此点的导数值等于0,由此求得积分常数c1= 0。
对(2-57)再进行一次积分得:
由于在变压器铁芯片内,截面磁场强度的平均值Ha,在任一时间内都必须等于电磁感应所要求的值,即满足(2-45)式的要求,因此对应图2-18对(2-58)式求平均值得:
把(2-60)代入(2-58)式,可求得在稳定状态条件下铁芯片中的磁场强度为:
图2-19-a和图2-19-b分别是由(2-61)式给出的,铁芯片中磁场强度按水平方向分布的函数H(x)和按时间分布的函数H(t)曲线图。
从图2-19-a中可以看出,由于涡流产生反磁化作用的缘故,在铁芯或铁芯片中心磁场强度最低,而边缘磁场强度最高。
在图2-19-b中,随着时间线性增长部分是变压器初级线圈励磁电流产生的磁场;Hb是为了补偿涡流产生的去磁场,而由变压器初级线圈另外提供电流所产生的磁场。
从图2-19-b可以看出,涡流损耗对变压器铁芯中磁场强度(平均值)的影响,与变压器正激输出时,次级线圈中电流产生的磁场对变压器铁芯磁场的影响,基本是一样的。值得注意的是,如果用同样方法对y轴方向进行分析,也可以得到同样的结果。
从图2-19-a可以看出,当x =δ/2 时,铁芯片表面磁场强度的最大值为:
评论