数字控制技术:改善功率密度及电源管理功能的高招
尽管40A数字设计的效率比模拟POL稳压器高且尺寸相当,但由于它的输出功率和电流提高了一倍,其功耗还是比较大。从需要从BMPS上散发的 热量来看,这导致了较高的功率密度。先前模拟设计的尺寸受元器件封装密度的限制,而这类的数字设计的尺寸则主要受限于对BMPS进行散热的散热器结构。也 就是说,如果采用传统的封装材料和冷却通道,用这种尺寸的BMPS来产生40A电流,将需要额外地考虑最终用户设备中的热管理和环境温度。
2. 封装密度
封装密度主要受效率的影响,这对最终用户来说具有同等的重要性。下面将会提到,数字设计的元器件的减少,对所实现的高封装密度贡献很大。我们计 算封装密度时采用了两种方法。第一种是单位面积电流密度,即POL稳压器的电路板上每cm3所实现的输出电流,单位为A/cm3。第二种则是传统的功率密 度,根据3.3VPOL稳压器最大输出功率来计算,单位是W/cm3。
对于20A的数字POL稳压器来说,其电流密度比参考模拟设计高289%,功率密度则提高了307%。而40A的数字POL稳压器的两种密度值 分别提高了312%和330%。需要指出的另一点是,相对于模拟设计,20A的数字设计在电路板面积减少61%的同时,输出电流还额外提高了2A。而对于 40A的数字设计而言,输出电流增加了22A(122%),电路板面积却减小了28%。
3. 元器件数量
所参考的模拟POL稳压器总共采用了58个元器件,这里不包含连接器引脚,但PCB作为一个元件被包含在内。采用相同的计算规则,20A数字设 计所用的元器件为24枚,而40A数字设计的元器件则为41枚。如上所述,数字设计中元器件数量的减少是导致功率密度提高的根本原因。元器件数量的减少, 除了可以改善封装之外,在未来利用数字控制的设计中,还有望在降低成本和提高可靠性方面发挥重要的积极作用。
4. 成本
由于PMH8918L是一个产品单元,所以说模拟设计的成本结构非常清晰。而数字设计位于一个原型内且只采用部分元器件,例如数字控制芯片,这 类器件都是最近最新引进的,因而还没有一个完善的定价机制。进一步说,我们期望随着数字控制技术的普遍采用,一些专用的元器件价格将会下降。因此这里我们 不提供具体的成本分析。但由于数字技术可能实现更高的集成度以及更高水平的电气和封装性能,我们坚信数字方案很快就会为绝大多数用户提供非常高的价值。
5. 可靠性
对于原型数字设计目前还没有详细的可靠性计算。18A模拟设计所计算出来的MTBF为380万小时。在两种数字设计中采用了与模拟设计中相同的 元器件降额设计方法。在数字设计的某些方面,元器件数量的减少将会更好地补偿电流的增加。通常,数字设计中的高集成度和较少的元器件内部互联将预示着具有 更高的可靠性。
本文小结
通过本案例的研究,相对于模拟设计来说,在POL稳压器的数字控制功能方面可以得出以下几个结论:
1. 数字控制稳压器的通用电气性能要等同于或者优于模拟设计;
2. 对于同样的输出电流,数字设计的效率高于模拟设计。效率提高超过1%是可能的;
3. 在封装密度方面数字设计具有明显的优点。这样,可以设计更小的BMPS,或者在标准的封装内可以提高可用功率;
4. 与模拟POL稳压器相比,数字设计可以大大地提高电流和功率密度,提高幅度可以达到289%-330%;
5. 随着40A数字设计的集成度的提高,散热将超过器件面积而成为约束封装的主要条件;
6. 数字设计大大地减少了元器件数量,20A数字设计减
评论