新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 时域反射仪的硬件设计与实现----关键电路设计(一)

时域反射仪的硬件设计与实现----关键电路设计(一)

作者: 时间:2013-04-24 来源:网络 收藏
DER-LEFT: 0px; PADDING-BOTTOM: 0px; MARGIN: 0px; PADDING-LEFT: 0px; PADDING-RIGHT: 0px; BORDER-TOP: 0px; BORDER-RIGHT: 0px; PADDING-TOP: 0px" alt=在不同时基情况下的相对延时的时间△t、采样次数和等效采样率。 src="/uploadfile/dygl//201304/20130424101540571.jpg" width=500 height=188>

3.1.2.1脉冲延时原理

FPGA内部的PLL资源具有时钟信号的相位偏移的功能,假如PLL的输入为250M的时钟信号,通过180度的相移后,输出时钟信号被反相,相当于将时钟信号向前或向后移动了2ns,如果脉冲信号的上升沿和PLL的输入时钟信号的相对位置不变,则分别利用变换前后的时钟信号作为采样时钟,采样率即被等效成了500MSPS.同理如果通过步进为72度的相移后,可以达到1.25G的等效采样率。

其它几种情况也可以推算出来。实际上,FPGA内部的锁相环资源很有限,只有两个PLL,并且PLL控制器内部时钟相位移位是一次设定成功的,即具有一次性的功能如果要修改,就必须从新编译、下载,因此不能通过PLL来实现延时的控制。经过多次实验和论证,采用了一种类似游标卡尺的方法实现了步进延时的作用。

游标卡尺是由毫米分度值的主尺和一段能滑动的游标副尺构成,它能够把mm位下一位的估读数较准确地读出来,因而具有非常高的测量准确度,目前其读数准确度有0.1mm、0.05mm和0.02mm三种。以0.02mm的测量准确度为例,游标副尺上有50个分格,它和主尺上的49个分格的总长度相等,一般主尺上每一分格的长度为1mm,游标上每一个分格的长度为0.98mm,则有50*0.98=49,主尺上每一分格与游标上每一分格的差值为1/50(mm)。当游标尺的零刻线与主尺上的零刻线对齐时,此时只有游标尺上的第50条刻线与主尺上的第49条对齐,其它均不对齐。主尺和游标尺上对应的一等份差值(0.02mm),是游标卡尺的最小读数,即游标卡尺的分度值叫精确度,它体现了测量的准确程度,游标卡尺正是利用主尺和游标尺上每一小格之差,来达到提高精确度的目的,这种方法叫示差法。

游标卡尺上的刻度都是等间隔的刻度,与数字信号里面的时钟信号非常相似,可以把两个周期时钟信号当作游标卡尺的刻度来使用。由于在反射测量模式下,最大等效采样为5GSPS,即最小步进为0.2ns,因此将0.2ns定义为这两个时钟信号的周期差。如果以250M的时钟信号作为主尺刻度,则游标时钟信号的周期为4ns﹣0.2ns=3.8ns,对应大约263M的时钟信号。这样每隔20个4ns的周期就会对应大约21个3.8ns的周期信号。由于263M的时钟信号必须通过PLL来实现,而PLL又要实现250M的信号,且263M的时钟信号通过单个PLL的内部锁相功能基本无法实现,且在FPGA内部运行250M以上的信号,计数上容易产生错误。

经过多次实验,将50M的时钟信号作为主尺,则游标的周期为19.8ns,对应了约为50.5M的时钟信号,用这两个时钟信号做比较非常合适。因为50M的时钟信号和250M的时钟信号成倍数关系,所以50M的时钟信号的前沿相对于25OM的时钟信号基本上是不变的。如果做与50M的时钟信号的相对延时,实际上也就是与250M时钟信号的相对延时。

3.1.2.2脉冲延时实现

为了实现最小0.2ns的时间延时,理论上应该将采样点相后移动0.2ns的间隔,前面已经讨论过该方法基本行不通。我们知道,移位是相对的,即被采样信号位置不变,而将采样时钟向后移动,与将被采样信号向前移动,而采样时钟保持不变,这两种方法在结果上都是一样的。50M的时钟信号和50.5M的时钟信号。两者周期相差0.2ns左右,由于50M的周期为20ns,即有20ns*99=19.8ns*100,表示这两个时钟信号每隔1.980us上升沿对齐一次,对齐之后,每经过一个小的时钟以后,50.5M的时钟信号上升沿比对应的50M的时钟信号上升沿向前移动0.2ns,依此类推,经过N个时钟以后,50.5M的时钟信号上升沿比对应50M的时钟信号上升沿向前移动0.2ns*N的距离。如图4一4所示。

游标卡尺原理在时钟信号上的应用

从图4.4可以看出,如果将50M的时钟信号作为采样时钟,将50.5M的时钟信号作为被采样信号,由于被采样信号的重复性,将依次采集到的点数做顺序拼合,则相当于对被采样信号进行间隔为0.2ns的采样。



评论


相关推荐

技术专区

关闭