基于一种无主从自均流逆变器并联装置的设计
采用DSP进行数字控制时,无法直接进行连续域中的积分运算,为快速准确地计算出有功、无功功率,此处设计采用全波傅里叶变换法,在数字域正交提取功率计算。设DSP在一个基频正弦周期内采样次数为N,u(k),i(k)为输出电压和电流,sin(k),cos(k)为正交基频波,则功率计算可改写为离散域的累加运算:
数字域中以k记录第几次采样,一个基波周期开始时k清零,记满一个基波周期k=N-1时再次清零。DSP将一个基波周期(2π)分成N等份,计算每等份的正弦余弦值,生成一个正余弦表,可用查表方式读正余弦值进行计算,每次采样后通过上述计算方法在一个基波周期内计算有功功率和无功功率。3 实验分析
3.1 系统主要参数
为验证此处设计的无主从自均流逆变器并联装置和控制策略的有效性,搭建了实验样机。样机主控制器选用TMS320F2812,辅助控制器选用XC2S200-5PO型FPGA,其中DSP完成主要控制功能,FPGA完成脉冲发生、I/O口缓冲、系统保护等功能,开关管选用PM150CLIA120型IPM,人机控制界面采用MT6070iH,系统主要参数为:电网侧电感Ls=3mH,电网侧电容Cs=40μF,直流侧电容C=2 200μF,输出侧电感Lo=3 mH,输出侧电容Co=40μF,并联侧电感L1=2 mH,直流侧电压Udc=400 V,开关频率10kHz。
3.2 稳态实验分析
系统前级全桥H1可进行单位功率因数整流,对电网污染少,图4a为整流侧电网电压us和电流is波形,Udc为C的电压,Idc为整流后直流电流,可见us与is同相位,功率因数高,Udc和Idc波动较小,系统性能满足设计要求。使系统运行在线性负载下,图4b,c示出3台样机并联运行时的负载和环流波形。由图4b可见,负载电压有效值能稳定在220V,THD=1.6%,具有较高的功率因数。由图4c可见,3台逆变器能均分负载功率,逆变器之间的环流均小于2A,并联运行稳定。
3.3 暂态实验分析
图5示出系统并联运行时,突增或突减一台逆变器后,并联系统能自动实现均流的暂态实验波形。此时有功、无功控制和并联电压控制能保证系统的稳定工作。
由图5可见,突增或突减一台逆变器并不影响系统的稳定运行,负载电压和电流也基本保持稳定,经短暂调整后,能迅速达到并机运行,仍然能均分系统功率。
根据上述分析,实验结果均与理论分析一致,并联系统在稳态和暂态均能正常工作且达到了控制要求,证明了此处设计的无主从自均流逆变器并联装置的正确性和可行性。
4 结论
设计了一种无主从式逆变器并联并支持热插拔自动均流的装置。根据有功、无功功率和幅值、相位间的关系减少环流,实现负载功率均分,并用逆变器并联实验验证系统运行的稳定性。
评论