基于便携式设备可降低电磁干扰(EMl)新技术的应用
图5 利用D类放大器延长电池使用寿命示意图
该解决方案应用范围为:音频基座、迷你扬声器与轻便型收录机。其特性为:8Ω扬声器提供的88%的 D类放大效率;集成DC音量控制范田为-38dB至20dB,而步长为2dB;低噪声,电源纹波抑制比(PSRR)为70dB;TPA2008D2型为 24引脚HTSSOP封装。扩谱调制的应用是降低EMI有效技术
有必要先介绍何谓扩谱调制技术。通过展宽信号频谱来减少EMI的需求,根据这个基本概念加以拓展的主要优化技术被称为优化扩谱调制或称频谱扩散(OSD)。它极大地减少了EMI,而没有受频谱展宽时钟(SSC)抖动问题的困扰。
应该说,免滤波器工作方式的一个缺点就是可能通过扬声器电缆辐射EMI。由于D类放大器的输出波形为高频方波,并具有陡峭的过渡边沿,因此输出频谱会在开关频率及开关频率倍频处包含大量频谱能量。在紧靠器件的位置没有安装外部输出滤波器的话,这些高频能量就会通过扬声器电缆辐射出去。免滤波器D类放大器采用“扩谱调制“方案,可帮助缓解可能的EMI问题。
扩展频谱模式下,采样时钟频率在规定的范围内逐周期变化,使输出频谱的分布比较平坦,从而改善了经过喇叭或音频线缆的EMI辐射,见图6所示。采样频率的变化不会破坏音频信号的恢复,也不会降低整体效率。
图6 扩展频谱模式下改善了经过喇叭或音频线缆的EMI辐射
一些D类放大器也可允许接受外部的系统频率同步,来降低或避开敏感的频带。另外,现代D类放大器具有主动幅射限制电路(AEL),AEL电路会在输出瞬变时主动控制输出FET的栅极,避免传统D类放大器中因感性负载的续流所引起的高频幅射,进而降低EMI。
例如 MAX9705、MX9773两款现代D类放大器除了具有普通的固定频率模式(FFM)、扩展频谱模式(SSM)、外部同步模式及SSM+AEL模式,用户可利用其SYNC引脚设定取样频率。现代D类放大器,加上仿真程序的计算,可计算出各个模式下的EMI特性.扩展频谱模式+主动幅射限制模式下,提供最佳的EMI抑制。通过抖动或随机化D类放大器的开关频率实现扩谱调制。实际开关频率相对于标称开关频率的变化范围可达到土10%。尽管开关波形的各个周期会随机变化,但占空比不受影响,因此输出波形可以保留音频信息。图7显示以MAX9700为例的扩谱调制的效果,是在OUT+或OUT-与地之间宽带(为10KHz)的输出频谱测量效果,即扩谱调制将MAX9700的频谱能量分布在更宽的频带内。
图7 以MAX9700为例的扩谱调制的效果,扩谱调制将MAX9700的频谱能量分布在更宽的频带内
扩谱调制有效展宽了输出信号的频谱能量,而不是使频谱能量集中在开关频率及其各次谐波上。换句话说,输出频谱的总能量没有变,只是重新分布在更宽的频带内。这样就降低了输出端的高频能量峰,因而将扬声器电缆辐射EMI的机会降至最少。虽然一些频谱噪声可能由扩谱调制引入音频带宽内,这些噪声可以被反馈环路的噪声整形功能抑制掉。
很多现代免滤波器D类放大器还允许开关频率同步至一个外部时钟信号。因此用户可以将放大器开关频率设置到相对不敏感的频率范围内。
尽管扩谱调制极大地改善了免滤波器D类放大器的EMI性能,为了满足FCC或CE辐射标准,实际上还是需要对扬声器电缆长度加以限制。如果设备因扬声器电缆过长而没能通过辐射测试,则需要一个外部输出滤波器来衰减输出波形的高频分量。对于许多具有适度扬声器电缆长度的应用来说,在输出端安装磁珠/滤波电容即可满足要求,见图8(a)所示。
图8(a) 输出端安装磁珠/滤波电容示意图

评论