电磁干扰/兼容技术知识:视音频接口的EMI/EMC抑制
MAX95118可以实现所有这些功能。如图2所示,分别给出了高分辨率图形卡输出采用MAX9511,采用L-C滤波器方案,以及无滤波原始输出的EMI特性。
图2. 三种情况下辐射的EMI:a) 无滤波,b) 采用无源LC滤波器,c) 采用MAX9511完备的EMI解决方案(MAX9511)
图3所示的MAX9511图形视频接口为RGB视频提供了一个匹配的、三通道可调EMI滤波器,分辨率范围涵盖VGA至UXGA,通道间偏斜误差小于0.5ns。通过改变单个电阻(Rx)的阻值来实现摆率调整功能。对应不同的VESA分辨率及其采样时钟范围,表1列出了阻值与摆率之间的关系。在图4的电路中,通过I²C控制的电位器MAX54329可提供32级滤波器控制。然而,从表1可以看出,在大多数应用中仅需要3级或4级控制。在最终的EMI/EMC测试中,无需任何机械或电气更改,就可以改善一个产品的EMI性能。
图3. 具有EMI抑制功能的MAX9511 VGA接口
图4. MAX9511驱动多路输出。通过MAX5432 I²C数字电位器控制可调滤波。
表1. MAX9511的摆率、带宽以及Rx电阻值
40 255 35 to 50 SVGA (800 x 600) 45 203 35 to 50 SVGA (800 x 600) 50 158 25 to 30 VGA (640 x 480) > 50 150 25 QCIF
RGB视频输出为低阻抗(ZOUT 1Ω),加上75Ω的反向端接电阻后,可在远程监视器和坞站之间提供45dB至50dB的隔离。以前,采用这种方法驱动两路不同的输出时,需要一个开关,以避免L-C滤波器输出连接较长的未端接分支。如图4所示,可以看出MAX9511是如何检测输出负载的,输出负载连接与否会使输入端的DAC端接阻抗产生的明显变化。驱动RGB输入的视频控制器能检测到这种阻抗变化,如果未接负载,则通过关断引脚来关闭视频输出和同步输出。DDC一直处于常开状态,以支持即插即用,驱动器还具有电平转换功能,可将低压控制器电平转换为标准的5V接口电平。同步驱动器具有50Ω (典型)输出阻抗,可采用外部电容来限制边沿摆率(图4)。同步抖动(不加电容情况下)一般小于0.5ns。视频性能还包括:+6dB增益,50dB的SNR,0.036%的线性误差和小于1%的过冲/下冲(具有出色的阻尼响应特性)。音频和EMI
音频接口要在不产生EMI的情况下获得效率和性能,要解决一系列不同的问题。在便携式应用中,我们想要最大限度延长电池寿命,而不期望效率低下的设计产生热量,因此D类放大器得到了广泛应用。问题是D类放大器使用PWM来实现高效率,这与开关电源很相似。使用非屏蔽扬声器连线接至输出端时,连线会像天线一样辐射EMI。尽管时钟频率(典型值为300kHz至1MHz)高于音频频谱,但它是一个具有大量谐波分量的方波。用来滤除该谐波分量的滤波器尺寸比较大,而且成本又高。在膝上型电脑等便携应用中,由于尺寸原因,这不是一个可行的解决方案10。
一般的设计拓扑无法同时解决这两个问题。为使输出音频功率达到最大,便携式应用采用桥接负载(BTL)的连接方式,此时扬声器的两根连线都得到有效驱动(图5)。在D类放大器中,利用比较器监视模拟输入电压,将输入电压与一个三角波进行比较。当三角波的幅度高于音频输入电压时,比较器翻转,同时反相器产生互补的PWM波型来驱动BTL输出级的另一侧。由于采用了这种BTL拓扑,输出滤波器实际上需要两倍于单端音频输出的元件数量:两个电感(L1和L2)和两个电容(C1和C2)。这两个电感需要处理峰值输出电流,因此尺寸都比较大,并占据了大部分空间。

EMC相关文章:EMC是什么意思
评论