基于Atmega128L的低功耗无线水表数据采集通信终端的设计和研究
2 软件设计
2.1 集中器与采集器通信协议
为确保集中器与采集器之间能够顺畅地进行通信,采用主-从结构的半双工通信方式,设计通信协议如表1所示。

根据CJ/T188-2004《用户计量仪表数据传输技术条件》,帧起始符是表示一帧信息的开始,规定为68H;仪表类型是采集通信终端的水表类型,本终端为冷水表,仪表类型是10H;地址域是识别每个采集终端的唯一标识,由7个字节组成,每个字节为2位BCD码,地址长度为14位十进制数,最少可接入上千亿个终端;控制码定义了通信规则[5];数据长度为数据域的字节数,用十六进制表示,读终端数据时L不大于64H,写终端数据时L不大于32H,L=0时无数据域;数据域为传输的数据,包括数据标识、序列号和数据;校验码用来检验该组数字的正确性,采用偶校验;结束符标识一帧信息的结束,规定为16H。
字节格式为每字节含8位二进制码,传输时加上一个起始位(0)、一个偶校验位(E)和一个停止位(1),共11位,先传低位后传高位。
2.2 采集通信终端软件设计
终端节点上的软件负责完成用户数据的实时采集,并通过无线通信模块将采集的数据包传送至数据集中器。终端节点遵循休眠-被唤醒-正常工作-休眠的循环工作模式。在休眠状态下,处理器停止工作,无线模块处于休眠状态。当终端接收到内部定时器的唤醒命令后,终端节点被唤醒,处理器进行数据采集、发送等命令。为了确保集中器能够收到终端节点发送的数据,集中器要返回给终端节点一个收到数据指令。这样做可以在软件上尽量降低丢包率和系统的功耗。终端节点的软件工作流程如图5所示。

3 实验数据分析
为了测量数据采集通信终端的丢包率和正确率,分别选取叠加厚度为70 cm的墙壁和空旷地带进行了实验。测试结果如表2所示。

对比在有障碍物和空旷地带的实验数据发现,障碍物的阻挡导致丢包率和正确率的下降、传输距离变小,严重影响了通信的可靠性。对比不同通信距离的空旷地带数据发现,传输距离越远,丢包率越高、正确率越低。结合实验结果及反复实验情况,得出影响水表采集通信终端可靠性的主要因素有两个:传输距离与障碍物的阻挡情况;其他无线技术的干扰。为了解决以上问题提高系统的可靠性,可采取如下措施:在硬件设置上提高发射功率;在软件设计上,增加接收反馈帧以及超时重发。实验证明,在数据采集通信终端在地下时,完全可以实现数据的收发。
低功耗无线水表数据采集通信终端的设计和研究,实现了地下水表数据抄收的功能,解决了地下水抄收困难的问题。相信这种自动抄表技术将会在工业节水方面得到很好的应用和更好的发展,也会为水表、电表、气表、热表的融合提供更好的支持。
评论