UC3855A/UC3855B高性能功率因数预调节器
3.7 软启动
为了确保一个稳定可控的启动,UC3855A/B 提供了软启动 (SS) 功能。SS 引脚为一个外部电容器提供了 15μA 的电源。该电容器限制了电压环路误差放大器的电源电压,从而有效地限制了放大器的输出电压,以及最大的期望输出电压。这样就能保证输出电压以一种可控的方式升压。
3.7.1 欠压锁定
UC3855A 的启动阈值为 15.5V(额定值),并带有 6V 的滞后,而 UC3855B 的启动阈值为10.5V,并带有 0.5V 的滞后。
4 曲型应用
为了能够说明设计程序,并突出需要定义的设计参数,设计了这样一个典型应用。该设计规范为:
- VIN=85-270 VAC
- VO=410 VDC
- PO (max)=500W
- FS=250kHz
- Eff >95%
- Pf > 0.993
- THD < 12%
上面提到的那些规范给出了一个常见的通用输入电压以及中等功耗应用。由于软开关以及零电压转换,现在我们可以实现 250kHz 的开关频率。Pf 和 THD 的数量与 UC3855 可实现的线路校正相符合。 4.1 设计程序
该设计程序是对 [8] 所提出内容的总结。但是为了固定组件值和/或指定更多可选用部件,一些值已被更改。 4.2 功率级设计 4.2.1 电感设计
ZVT 转换器中的功率级电感设计与传统升压转换器的设计一样。理想的开关纹波的数量决定了所需的感应,并且允许更多的纹波来减小电感值。低线路及最大负载情况下,峰值电流会出现比较糟糕的情况。峰值功耗为平均功耗的两倍,并且 VPK 为 VRMS。为了能计算出输入电流,需假设功率为 95%。
电流纹波与峰值电流之间一个比较好的折衷方案是允许 20% 纹波达到平均比率。这也使峰值开关电流保持在 10 A以下。
重新调节升压转换器的转换比率,求出 D 的解,得出:
我们现在能计算出所需的电感。
4.2.2 输出电容器选择
输出电容值不但会影响保持时间,而且还会影响输出电压纹波。如果保持时间 (tH)为主要的标准,则下面的方程式就给出了 CO 的值:
在这个例子中,对保持时间和电容器尺寸进行了折衷,并选用了一个值为 440 μF 的电容器。该电容器库是由两个并联的 220μF、450VDC 电容器构成。
4.2.3 功率 MOSFET 和二极管选择
所选用的主 MOSFET 为 Advanced Power Technology 公司推出的 APT5020BN(或同级别的产品)。该器件规格为 500V、23A,其 RDS(on) 为 0.20Ω (25℃)、COSS » 500 pF、且采用 TO-247 封装。一个 5.1Ω 的电阻器与栅极串联放置,用来抑制启动时的寄生振荡,一个肖特基二极管及 2.7Ω 的电阻与该电阻器并联放置以加速关闭。在 GTOUT 和接地之间也将放置一个肖特基二极管,以避免引脚被驱动至接地以下,同时该二极管的放置应尽可能的靠近该器件。
所选择的升压二极管为 International Rectifier 公司推出的规格为 15-A、600V 的超速二极管 HFA15TB60(或同级别的产品)。试回想,一款采用了二极管软开关 ZVT 优势的转换器。在配置了 ZVT 的情况下,升压二极管对开关损耗的影响可以忽略不计,因此可以使用一个速度较慢的二极管。但是,在这个应用中,还是很有必要使用超速二极管。
根据二极管的恢复时间,确定 ZVT 电感的尺寸,并且速度较慢的二极管需要配置一个更大的电感。这就要求一个相应更长的 QZVT 开启时间,增加了传导损耗。较大尺寸的电感还需要更长的放电时间。为了保证谐振电感能完全放电,主开关的最短启动时间应近似等于 ZVT 电路启动时间。这就得出:
DMIN 会影响不断运行的升压转换器的最小允许输出电压。ZVT 电路的启动时间为一个稳定的 trr 功能,因此选择一个超快二极管使谐振电路损耗保持最小,并对输出电压产生最少的影响。由于对于大部分的谐振电路启动时间而言,有效系统占空比是主开关启动时间的主要功能,升压二极管正极的电压通过谐振电容器得到抑制。
这些考虑事项建议二极管的恢复时间应短于 75ns。该设计中的平均输出电流低于 1.2 A,峰值电流为 9.2A。二极管相关的传导损耗大约为 2.2 W。
当使用一个超速二极管时,二极管以极少的开关损耗模式运行。这就提升了整个系统的效率,并降低了二极管的峰值应力。
4.3 ZVT 电路设计 4.3.1 谐振电感
ZVT 电路设计简单易懂。该电路具有有源缓冲功能,例如,电感设计用于二极管的软关闭。选用的 ZVT 电容器用于 MOSFET 的软开关。
谐振电感为升压电感电流提供了一个预备电流通道,从而控制了二极管的 di/dt。当 ZVT 开关开启时,输入电流从升压二极管转移至 ZVT 电感。可以通过确定二极管关闭速度来计算出电感值。二极管的逆向恢复时间给出了其关闭时间。由于实际电路中的逆向恢复特性变化多样,以及各个厂商对逆向恢复的定义各异,因此很难计算出 Lr 的准确值。电路环境对逆向恢复产生影响的例子就是谐振电容器正常的缓冲作用,该电容器限定了二极管正极的 dv/dt。一个较好的初步估测就是允许电感电流在三次二极管标准逆向恢复时间内缓慢升高至二极管电流。最大电感值的限制就是其对最小占空比的影响。正如二极管选择章节所述,L−C 时间常数对 DMIN 产生影响,从而对 VO (min) 产生影响。将 Lr 设计得过大也会增加 ZVT MOSFET 的传导时间,并增加谐振电路传导损耗。当减小了 Lr 的值,会给二极管带来更强的逆向恢复电流,并且提高了通过电感和 ZVT MOSFET 的峰值电流。随着峰值电流增强,存储在电感中的能量也会增加(E = 1/2 x L xI2)。为了减少关闭时节点上的寄生振荡,该能量应保持在一个最小值。
从某种程度上来说,二极管的逆向恢复是其关闭 di/dt 的一个功能。如果假设有一个可控 di/dt,那么该二极管的逆向恢复时间可以近似估测为 60ns。如果电感将上升时间限制为 180ns (3 x trr),则可以计算出电感。
磁芯损耗以及由此导致的温度上升限制了电感的设计,但不会使磁通密度饱和。这是由于强 ac 电流分量和相对较高的运行频率。一个好的设计程序在 [10] 已作了描述,已超出本文的讨论范围。但是本文已提及到几个要点。磁芯应该为材质较好的高频率低损耗材料,例如有气隙的铁氧体,或铁镍钼磁粉芯 (MPP)。在这一应用中一般不宜使用铁粉磁芯。相对不是太贵的铁硅铝磁芯,尽管与 MPP 相比较,具有更高的损耗,但还是可以使用该材质磁芯。损耗较高的材料实际上易于抑制 ZVT 开关关闭端的谐振。也可以通过将跨绕线电容保持至一个最小值的方式来优化电感绕组结构。这样就减少了关闭端的节点电容,同时也减少了所需的衰减量。可以通过分析由 Lr 和 Cr 组成的谐振电路,以及当电流流至 lin 时确定谐振循环开始的方式找出电感电流。
其中,
由此,峰值电流等于 IIN 与输出电压除以谐振电路的特性阻抗的和。降低 Lr,或者增加 Cr 都会增加峰值电流。电感的设计是使用 Magnetics 公司的 MPP core 55209,带有 33 个绕组,电感为 8μH。该电感应使用 Litz 线或几股小磁线构建,从而将高频影响最小化。
4.3.2 谐振电容
谐振电容器的大小可以确保主开关的可控 dv/dt。高效谐振电容器的电容应为 MOSFET 电容与外部节点电容之和。APT5020BN 的输出电
评论