红外图像的边缘提取
r(x,y)=max{gi(x,y)|?坌i} (3)
设定阈值t,得到二值化边缘图像:
R(x,y)=1 r(x,y)≥t0 r(x,y)t (4)
2.2 计算步骤
(1)输入原始图像A,通过对原始图像A在微动方向上平移,生成综合微动图像F。F=[Ah,Av,Ad],其中h、v、d分别代表水平、垂直和倾斜方向。本文分别将图像A向8个方向平移,移动距离为一个像素单位。
(2)计算各微动方向的边缘图像H:
Ci=Fi-A, i=h,v,d (5)
(3)计算竞争灰度边缘图像H:
H=max(Ci), i=h,v,d (6)
(4)将竞争灰度边缘图像H重新量化到[0,255]。
(5)为了减少伪边缘的产生,对竞争边缘图像H进行均值滤波处理:
G=mean(H) (7)
(6)对量化滤波后的灰度边缘图像,采用非极大值抑制和双阈值检测边缘连接处理,得到二值边缘图像。
2.3 非极大值抑制
直接对经过量化滤波的竞争灰度边缘图像进行二值化操作并不能准确地提取出图像的边缘,因此需要对经过量化滤波的竞争灰度边缘图像的幅值进行非极大值抑制来进一步确定边缘点。若图像G(x,y)上(i,j)像素点的边缘强度G(i,j)小于沿平移线方向上的两个相邻像素点的边缘强度,则认为该像素点为非边缘点,将其灰度值设为0。即保留幅值局部变化最大的点,细化幅值图像中的屋脊带。
2.4 双阈值检测及边缘连接
由于图像中噪声和边缘都属于高频部分,经过非极大值抑制处理过的边缘图像仍然有很大一部分是属于噪声的伪边缘点,因此必须进行去噪处理[7]。本文采用高低双阈值的方法实现此去噪过程。设定高、低两个阈值,高阈值处理后的边缘图像能去除大部分噪声,得到尺寸较大的清晰边缘,但同时也损失了一些有用的细节边缘信息;低阈值去噪处理后图像保留了较多的信息,能保留细微边缘,但是产生了较多的伪边缘。经过双阈值化处理之后能够得到两幅不同特征二值边缘图像。以高阈值边缘图像为基础,以低阈值边缘图像为补充进行边缘连接,实现最终的图像边缘提取。

评论