不过,在这种情况下,电流检测架构并不是最优的,因为输入放大器及其相应的输入晶体管将直接与大的负压相连。因为输入信号不应当受大的输入负直流电压的影响,因此,电流检测放大器的输入ESD二极管通常设计成仅在指定输入电压范围的低端以外导通。
除了直流负压,这种电流检测器还容易受到负的输入瞬态负流的影响。在PWM系统中这是一种常见情况,其中电流取样检测器随着内部FET开关导通与关断,其输入共模电压从地到电源电压之间摆动。同样,也必须认真考虑最大绝对额定值,这些值主要由放大器输入ESD二极管决定。和以前一样,差动放大器受到高输入电阻的保护,从本质上讲是阻止负的瞬态电流进入;因此ESD二极管通常设计为能够钳位大的负电压。但是,当采用电流检测架构时,在每个短路瞬间,负瞬态电流能启动输入ESD保护,而通常的设计是:当输入电压接近放大器输入共模额定值时,启动输入ESD保护。虽然这种大小的脉冲一般不会损坏AD8210放大器ESD单元,但这方面的性能因器件不同而异。为了确保不会出现错误,在实际系统中应当对这个参数进行测试。
输入偏置电流:在电源管理非常重要以及必须考虑少量泄漏的应用中,两种架构中的不同输入结构都要求考虑输入偏置电流。例如,在电池电流检测系统中,两个架构都可以监控高端电流。不过,当系统关断且电流检控器的电源关断时,虽然输入仍然与电池相连,差动放大器(如AD8206)内部电阻网络中的固有接地线路将需要偏置电流,以持续耗尽电池电流。另一方面,由于输入共模阻抗非常高(AD8210输入共模阻抗》5 MΩ),采用电流检测架构的放大器不会耗尽电池,因为在输入到接地的路径中几乎没有电流。
结论
在汽车、电信、消费电子和工业应用中,高端电流检测是一种广泛的需求。现在市场上销售的集成高压差动放大器和电流检测放大器都可以实现这种功能。根据应用中的精度和性能要求,系统工程师需要认真考虑哪种类型的电流检测器最适合其系统。下表概括出典型考虑因素。
两种类型的电流检测器都可以工作,但不同架构的优势却取决于截然不同的指标折衷。对于瞬态电流监控,宽带宽的电流检测放大器最适合,但差动放大器更适合监控平均电流。此外,电流检测放大器具有最小的输入电源关断偏置电流泄漏,因此非常适合对电流消耗敏感的电源管理应用。不过,采用外部滤波器时,高端电流检测放大器的输入结构可能限制性能并要求仔细检查,以确保在恶劣应用环境使用时不超过绝对输入额定值。

评论