高功率单模光纤激光器最新进展分析
在上述光纤放大器测试期间,使用光电二极管分析的一小部分功率来确定 TMI 阈值。功率波动的发生相当突然和显著(见图 5)。虽然在使用光纤 1 的测试中,这种信号变化是显著的,但对于光纤 2 的功率水平达到4.3kW 都无法探测到这种情况。相应的斜率如图 5a 所示。
本文引用地址:https://www.eepw.com.cn/article/201707/362236.htm

光谱和时间测量可以用常规技术来执行。它们允许探测诸如 SBS 发生(与 TMI 不同的时间特征)或 SRS(光谱特征)等效应。应当注意在高动态范围内进行测量,以观察寄生光谱特征的早期生长,如放大自发发射或SRS。这种高动态光谱如图 5b 所示,并证明 SRS 是不可探测的。
光束质量测量是光纤激光表征中最困难的部分,值得单独讨论。简言之,不引入热效应的衰减是关键,可以用菲涅耳反射或低损耗透射光学元件来完成。
在这里介绍的实验中,使用楔形平板和脉冲泵浦,在比 TMI 出现的时间长的时间范围上进行衰减。在4.3kW 的输出功率下,测得 x 方向上的 M2 为 1.27,y 方向上的 M2 为 1.21。
超快科学中的应用
在高功率单模光纤激光器功率提升大约十年的停滞之后,现在开发新一代具有优异光束质量的千瓦级光纤激光器似乎是可行的。业界已经展示了 4.3kW 的输出功率,并且输出仅受泵浦功率限制。确定了进一步提升的主要限制,并确定了克服这些限制的方法。
应当注意的是,对所有已知效应的仔细研究和随后的参数优化,带来了光纤设计的进步,并最终带来了输出功率的新记录。进一步提升和光纤适应其他应用看起来似乎是可行的,这将是接下来的目标。
这带来了一些有趣的观点。一方面,项目合作伙伴希望将结果转化为工业产品,但需要进一步的重大开发力量。另一方面,该技术与其他光纤激光系统(例如飞秒光纤放大器)的提升高度相关。
在超快激光脉冲的光纤放大中,单根光纤已经实现了近1 kW的功率,而通过组束技术,提升到 5kW 现在看来是可行的。虽然这些系统正在为诸如 ELI 等研究中心研发,开发可靠的光束传输手段仍然是工业系统的一项主要挑战。
单模光纤激光器和飞秒光纤放大器的提升,都将需要大量额外的研究工作。这一努力将得到 FraunhoferIOF 旁边一幢全新大楼的支持。这个新的光纤技术中心建筑于 2016 年完工,并设有专门的实验室,用于制造和表征有源光纤、无源光纤以及纳米结构光纤。还将安装用于制造特种光纤的单独拉丝塔。(文/Thomas Schreiber,Andreas Tünnermann,Andreas Thoss)
评论