新闻中心

EEPW首页 > 汽车电子 > 设计应用 > 主动前轮转向控制技术研究

主动前轮转向控制技术研究

作者: 时间:2011-05-30 来源:网络 收藏

本文引用地址:https://www.eepw.com.cn/article/197435.htm

  在主动转向防侧翻的控制中,由于附加转角的存在,会影响车辆按照驾驶员意图行驶的能力,因此控制策略中应由一个关于汽车行驶时车道保持能力的控制方法,如采用主动制动的方法。由于车辆侧翻的危害性比较大,因此这类控制一般都遵循了侧翻控制优先于车道跟随的原则。

  2.4 可变转向传动比的控制

  操纵稳定性实际上是一个人车路闭环系统的特性,操纵稳定性的好坏最终决定于驾驶员感受,因而在主动的控制中,如何提高驾驶员操纵的安全性和舒适性也成为提高系统操纵稳定性的一个重要因素。在传统汽车上,从方向盘到车轮的传动比是一个定值。在低速时,车辆如在泊车停靠等工况下,或者由于障碍物而突然变道时,需要驾驶员大幅、快速操纵方向盘,增加了驾驶员的身体负担。相反,在高速时,由于车辆转向响应增益加大,较小的方向盘转角就会产生较大的侧向加速度,增加了驾驶员的精神负担。可变转向传动比可有效地解决上述问题。一般来说,变转向传动比控制中转向传动比的变化主要取决于两方面的因素:车速和方向盘转角。随着车速的升高,转向传动比增加,随着方向盘转角的增大,转向传动比减小,如图8所示。这样,可以使得驾驶员在低速时转向轻便而高速时操纵稳定。在目前的主动控制中,许多控制算法都把可变转向传动比控制作为一个前馈环节,同反馈环节一起改善车辆的操纵稳定性。在机械式主动转向系统中,可变传动比是通过转角叠加的方式实现的,其输入、输出关系如下:

  

车速和方向盘转角

  式中:Wsw为方向盘输入转角,Wring为主动齿轮输入转角,α1、α2为两者叠加的比例系数。

  3 主动动力学控制展望

  由于车辆横摆角速度和侧向加速度通过轮胎的侧向力耦合,利用主动转向通过侧向力来改善车辆的操纵稳定性必然面临无法解决的矛盾,即侧向加速度与横摆角速度无法同时达到比较理想的优化状态。如何理解这一矛盾的性质以及如何实现车辆侧向运动和横摆运动的综合改善从而进一步提高车辆的操纵稳定性,将是需要我们深人思考和研究的问题。

  由于轮胎本身存在侧向力饱和的情况,因此主动转向极限工况下作用非常有限。车辆的操纵稳定性不仅可以通过转向来影响,而且可以通过纵向运动(驱动、制动)的控制产生的直接横摆力矩来影响,同时,它还与车辆的悬架系统特性有着密切的关系。因此,主动前轮转向系统与各系统间的集成控制就成为未来的必然选择。通过集成控制,可以将各系统对操纵稳定性影响的优势充分发挥出来,最大限度地提高车辆在极限工况下的稳定性。目前,已经出现了一些主动前轮转向与其他系统的集成控制方案,比较多见的是主动前轮转向与直接横摆力矩控制的集成,以及主动前轮转向与主动悬架的集成等。

  图9所示为主动前轮转向与直接横摆力矩控制的集成控制系统的控制算法框图。该控制系统可以提高车辆稳定性,拓宽极限行驶区域,减小转向幅度,更少产生由于制动干预引起的急剧减速,从而使车辆行驶安全性、舒适性得到大大提高。

  

主动前轮转向与直接横摆力矩控制的集成控制系统的控制算法框图

  图10所示为丰田公司提出的一种主动转向和主动悬架集成控制结构。系统由前轮转向控制单元和阻尼力控制单元组成。分为正常模式和运动模式,通过一个开关来进行选择。在运动模式中,转向传动比更小,减振器的阻尼力大于正常模式。在两种模式下,转向力的感觉是相同的。

  

主动转向和主动悬架集成控制结构

伺服电机相关文章:伺服电机工作原理



上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭