基于Verilog HDL的UART模块设计与仿真
2.1 波特率发生器
波特率表示的是每秒钟传送的二进制数据的位数,即单位时间内传送的信息量。在串行异步传送中,常用到的波特率为1 200、2 400、4 800、9 600、19 200等。波特率发生器实际上是一个分频器,主要是产生和。RS-232通信所采用的波特率同步的时钟。由于串行数据帧与接收数据时钟是异步的,所以存UART的接收端在什么时刻将数据移入寄存器,怎样选择可靠的采样点是非常关键的。一般采用高速时钟对串行数据采样是非常有效的方法。在实际设计中,一般最大选择16倍于波特率的时钟频率。实现波特率时钟的基本思路就是设计一个计数器,该计数器工作在速度很高的系统时钟下,通过总线写入不同的数值到波特率发生器保持寄存器中,然后用计数器的方式生成所需要的各种波特率就能得到所需的波特率时钟,仿真如图3所示。本文引用地址:https://www.eepw.com.cn/article/191639.htm
2.2 接收模块
接收模块是整个UART的设计的重点,其主要功能是检测数据的起始位,并对接收的数据进行串并转换,并将接收好的数据储存等待微机处理。由于串行数据帧与接收数据时钟是异步的,接收功能实现的关键是接收器与每个接收字符同步。要保证异步通信的双方准确无误地交换信息,必须有效控制采集通信线路上的电平信号的时机。由异步串行通信的特点可知,接收同步是通过低电平起始位实现的。而为了保证采样的正确性,采样在数据位的中间进行,并且接收单元采样数据的频率与发送单元发送数据的频率相同,是波特率时钟周期的16倍,这样可以有效地降低由于时钟不匹配而导致的误采样。接收模块的设计主要由状态机实现其核心功能,采用独热编码方式,虽然独热编码多用了两个触发器,但所用组合电路可节省一些,使电路的速度和可靠性有显著提高。控制接收器的起始/停止位检测,接收数据的计数,移位寄存的功能。状态机分为5个状态,分别为:IDEL,CENTER,WAIT,SAMPLE,STOP。状态转换图如图4所示。
1)IDLE状态 系统被复位后,接收状态机进入IDLE状态,等待起始位到来,输入数据在空闲时保持为1,当输入由“l”跳变为“0”时,状态机跳转到CENTER状态。
2)CENTER状态 启动起始位检测电路,为排除噪声干扰,状态机等待8个脉冲,如果数据线上仍为低电平,则状态机跳转到WAIT状态,并启动采样电路。如果是噪声干扰,则转入IDLE态。
3)WAIT状态 状态机WAIT状态,判断数据接收是否完毕,若未完成采样,则转入SAMPLE状态进行数据位的采样检测,同时启动位计数器,用来控制数据接收的位数。无论停止位是几位,状态机只对停止位作一次采样。接收完毕,转入STOP状态。
4)SAMPLE状态 在此状态对串口输入数据进行采样,每次采样均位于数据位的中心。并每接收完一位数据,状态机转入WAIT状态。
评论