迟滞型转换器控制高亮LED分析
对于降压LED控制器来说,最好使用高侧电流检测方式,此时LED位于电流检测电阻和电感之后。迟滞转换器的简单特性提供了共阳极的LED驱动方案。
这种共阳极电路见图9,它将LED的正极直接连到电源上。LED串仍与检测电阻(Rsense)和电感串联在一起,因此仍可确保迟滞型转换器正常工作。共阳极的称呼通常指的是单个LED(或并联LED组)的配置,但这个概念可以扩展到串联LED或共享同一V+电压轨的多个LED链。

图9:共阳极拓扑。
这种配置主要在电路性能方面具有不少优势,而且在安装便利性和系统中器件数量方面也有明显优势。从性能角度看,这种电路与标准降压拓扑相比在负载调整率方面有所改进。而且这种电路的开关频率较低,从而减少了开关的功率损耗,提高了效率。对多LED链系统来说热管理也更简单了,因为所有正极都接在一个散热器上,具有相同的电位,如图10所示。最后,由于输入端的电压变化幅度变小了,共阳极配置还允许使用更小的输入电容。

图10:使用共阳极拓扑的多通道LED控制。
共阳极拓扑结构简化了灯箱广告和灯墙应用的安装,驱动器通常在远端就与LED链分开来。在这种情况下,每个链的第一个正极被直接连至电源上,因此只需一根线就可以连接所有的LED链。不过,仍需使用另外一根线连接每个链的负极。
总之,共阳极拓扑不仅节省了走线,而且减少了器件数量。通常需要给LED串并联一个电容以便减少LED上的纹波电压,而在共阳极连接中没必要这样做,因为输入电容已经解决了这个问题。值得注意的是,到迟滞型转换器的供电电流会流过LED,但对效率的影响可以忽略。
迟滞型转换器采用共阳极连接的主要缺点是,LED输出电压必须低于迟滞转换器的最小输入电压。与标准降压型配置相比,这种配置减少了可被驱动的LED最大数量。
本文小结
迟滞型转换器可用于较宽的电压范围,并能驱动更多的LED负载。所采用的拓扑结构适用于PWM或直流调光,但必须考虑最大化电路性能限制。其固有的简单性和稳定性将给越来越多的LED照明应用带来莫大的好处。
评论