模块休眠技术与节能实现
4.1 模块休眠技术的软件实现过程
(1)通过AD转换采集电池组电流,判断电池充电状态为浮充。
(2)通过AD转换采集开关电源模块实际输出电流,通过设置得到系统开关电源模块理论最大输出电流,计算得出电源系统当前负载率。
(3)调整模块数量,使负载率调整到40%—80%之间,计算当前所需开启模块数量,延时一段时间后进入轮休状态。
(4)监控下发指令控制模块开关,调整模块开启数量为上一步计算得到的值,并开启延时。
(5)延时时间到,开启一台新模块,然后关闭一台原有模块,并开启新的延时。重复执行步骤5,实现轮休。
(6)实时计算负载率,如果超出40%—80%区间,则重新计算需开启的模块数量,然后在新的模块数量的条件下,继续以上(4)步和(5)步工作,实现轮休。
软件实现过程流程图如图1所示。本文引用地址:https://www.eepw.com.cn/article/178220.htm
图1 软件实现轮休过程流程图
4.2 高频开关电源模块的休眠技术实现原则
为了在提高模块转换效率和节约能源的同时,保证整个直流电源系统的可靠性和安全性,在休眠技术中还应该加入以下原则。
(1)先开后关原则。即在轮休状态下要关闭1台本来开启的模块前,必须先开启1台本来关闭的模块。并通过单独采集新开启模块的电压,来判断该模块确实开启后,才能关闭原有模块。
(2)模块故障跳出原则。发现模块上传故障,或判断模块通讯故障,都要立即结束轮休状态恢复模块浮充状态。发现故障解除则重新倒计时进入新的轮休状态。
(3)最少模块数原则。不论何时都要保证处于开启状态的模块数不少于2台。
(4)充电状态转换原则。轮休只有在浮充状态下才进行。当充电状态从浮充转为均充时,立即跳出轮休状态。当充电状态重新转为浮充状态后,重新倒计时进入新的轮休状态。
(5)交流异常保护原则。实时监测交流供电状况,当发现交流出现超限、缺相等异常状态时,立即跳出轮休状态。当检测交流电恢复正常,重新倒计时进入新的轮休状态。
随着网络智能化的日益普及,电源的智能化已经成为必然的发展方向。智能化的电源不但可诊断自身的各种故障,而且可根据不同的应用场合,自动调整、设定相应的运行模式,以满足不同的需求。九洲电气的JZE-MC-V系列智能监控系统就是一种智能化管理的监控系统。管理人员可以通过参数设置,设置电源模块的工作状态、充电状态转换条件、轮休状态、轮休延时时间等,真正的实现电源的智能化管理。既增加了系统的灵活性又节约了能源。
评论