一种低压程控电源的设计
从表1及图5可以看出,在提供了驱动电源后,利用TLP250就可以很容易地实现驱动电路与主电路的接口,当光耦导通时,V1导通,VCC近似等于Vo,此时输出到MOSFET上的栅漏电压近似为15V;当光耦截止时,V2导通,Vo近似等于GND,此时输出到MOSFET上的栅漏电压近似为-9V。
4 驱动电路与控制电路的接口
由于在本设计中,采用单片机作为测量系统的核心,因此,控制电路的核心也采用单片机,为了节约单片机的IO口,采用一片74LS175作为控制信号的锁存器。驱动电路与控制电路的接口电路如图6所示。
在图6中,AD0—AD3为低四位数据总线,CLK2为译码器与单片机读写信号配合给出的触发信号。在测量过程中,当需要改变电源的状态时,直接将数据写入到74LS175中并锁存,就可以据此控制各个桥臂的导通与关断。在此需要注意的是,在调试过程中一定不要给出错误的数据,造成桥臂直通,从而使得MOSFET永久损坏。

图6 驱动电路与控制电路接口电路
5 保护电路设计
5.1 过电压保护电路设计
在本设计中,由于电源容量仅为500W,因此,可以采用简单的RC吸收电路。电路图如图7所示。

图7 RC吸收电路
将图7所示的电路并联到MOSFET两端即可有效限制冲击过电压。电容的参数可以通过实测来计算,也可以简单地选取MOSFET极间电容的2倍,电阻的参数与开关频率有关。
5.2 过电流保护电路设计
在本设计中,由于电源容量不大,因此,考虑采用晶体管过电流保护电路,如图8所示。
在图8中,R1—R10为1Ω的标准电阻,功率为2W,当电流超过预定值时,在并联电阻上的压降超过0.7V,三极管导通,此时,MOSFET将因栅源极间承受反向电压而截止,从而切断主电路;当电流值正常时,MOSFET正常导通,不会影响电路的正常工作。这种电路的缺点在于,如果电路中出现时断时续的过电流时,MOSFET将会不断地动作。为此,在图3中还加入了其他保护元器件。

图8 过电流保护电路
从图3可以看出,为了防止主电路整流侧过流损坏,在变压器副边设置了空气开关。在此需要说明的是,此开关不能设置在变压器原边,以避免因励磁涌流而误动作。在逆变部分还加入了小电感,以防止电流变化造成的损坏,串入快速熔断器作为晶体管过电流保护的后备保护。
MOSFET管栅源极间的保护电路在很多文献中已经给出,在此不再多述[3]。
6 结语
将MOSFET应用于自动测量领域,采用单片机作为测量系统的核心,成功解决了自动测量过程中需要控制电源状态的问题。利用此电路不仅可以自动倒换电源极性及实现电源的程控关断,而且,在MOSFET开关频率允许的前提下,还可以利用此电路编程实现任意的SPWM波形。
此设计结构紧凑,可控性高,且成本较低,在测量试验中取得了满意的效果,体现了程序控制的优势。
评论