气动泵流量控制系统的设计
2 比例电磁阀
比例电磁阀在20世纪60年代末就已经得到了应用,最初是用于液压控制系统,随着单片机和集成电路的发展,其逐渐应用到各种气体的流量控制中。比例型电磁铁的工作原理如下:线圈通电后,轭铁和衔铁内部产生磁通并产生电磁吸力,将衔铁吸向轭铁,同时衔铁上的弹簧受到压缩,当衔铁上的电磁力和弹簧力平衡时,衔铁停止位移。比例型电磁铁的衔铁运动时,气隙保持恒定,即衔铁在有效行程范围内,吸力保持恒定,而电磁铁的吸力在有效行程范围内和线圈的电流大小成正比。目前,过程控制用比例电磁阀均为单级阀,和普通单级电磁阀区别不大,如图4所示。控制信号进入控制器放大后,在比例电磁铁线圈的两端加上一定的电压,转换成一定的电流信号,驱动衔铁(即阀芯)开启,阀芯上的电磁力和弹簧力平衡后,阀门的开度不变;输入信号变化,阀门的开度也发生变化,从而达到控制所需参数的目的。
图4 单级比例电磁阀
软件部分
1 PWM波的产生
设计采用单片机atmega32产生PWM信号。atmega32的定时/计数器的PWM模式可以分成快速PWM和频率(相位)调整PWM两大类。本设计采用快速PWM模式,快速PWM可以得到比较高频率的PWM输出,响应比较快,因此具有很高的实时性。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。快速PWM模式的控制寄存器设置如下:
//输出端口初始化
PORTD=0x44;
DDRD=0x20;
//T/C1初始化
TCCR1A=0xC3;/*比较匹配时OC1A输出高电平,在top值时清零ICP下降沿捕捉,
时钟1/8分频(暂定),即工作在反相pwm模式*/
TCCR1B=0x0A;//10位快速pwm模式
TCNT1H=0x00;//start at 0
TCNT1L=0x00;
2 控制系统的程序流程
其控制程序的流程图如图5所示。
图5 流量控制流程框图
3 PID子程序流程
将系统误差e(k)和误差变化率Δe(k)变化范围定义为e(k),e(k)={NB,NM,NS,O,PS,PM,PB},各元素分别代表流量差值及流量差值变化率。根据不同的e(k),Δe(k)的量化取值和控制器数学模型,选择相应的控制器计算公式进行PID运算,从而完成流量的智能控制。专家PID控制算法的PID子程序计算流程如图6所示。
图6 PID子程序框图
Matlab下的仿真
Matlab是控制系统的一种分析和仿真软件,利用它可以方便准确地对控制系统进行仿真,为了验证数字PID算法的可靠性,采用Matlab6.5下的simulink组件对增量数字PID算法进行了仿真,仿真结果如图7所示。仿真结果表明运用PID对PWM方波进行调解具有良好的动态性和稳定性,从而证明了该气体流量控制系统得可行性。
图7 仿真结果
结语
传统的气体流量控制大多采用高速开关电磁阀,电磁阀的频繁开关会产生很大滞后性,不利于控制的系统的实时性。本设计采用了西门子的专用PID模块,大大简化了程序。同时,采用了图形编程方式,使程序更直观,交互界面更加友好。运用数字PID算法结合AVR单片机的PWM功能实现了气体流量的控制,利用PWM信号控制比例电磁阀开口的大小,实现了流量的连续控制,减少了滞后性,同时采用了增量式数字PID算法调节,实现了闭环控制,使系统调节更准确、更稳定。此外,运用Matlab软件进行了仿真,证明了系统的可行性。数字PID算法调整控制参数较之硬件PID控制器操作简便,系统设置灵活。
差压式流量计相关文章:差压式流量计原理
评论