关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 以谐波补偿为基础的逆变器波形控制技术研究

以谐波补偿为基础的逆变器波形控制技术研究

作者: 时间:2012-09-05 来源:网络 收藏

本文引用地址:https://www.eepw.com.cn/article/159959.htm

式中:k=0,1,…,N-1;

=

显然,常规的FFT算法,其输出点数和输入点数是相等的,但在本系统中只须求出X(1),X(3),X(5),X(7),X(9)等5个输出点,其他输出点是不须计算的。根据基于FFT的蝶形计算流程图可以知道,在只须计算指定的若干个输出点的情况下,可以大大减少计算量,节省大量的DSP时钟,这就使得在计算能力并不强大的F240定点DSP上,实现基于FFT算法的实时频谱分析成为了可能。本文把这种经过化简的算法称为改进型FFT算法。

发生器的作用是把FFT分析出的进行预畸变,然后把预畸变的信号作为指令送给对象。之所以要对谐波进行预畸变,是因为对象对谐波的跟踪是有差的,这就导致谐波信号通过被控对象到达扰动注入点时,并不与扰动信号形状相同,而是相位正好相差180°的信号,这样就无法很好地抵消扰动。谐波发生器的预畸变算法表达式如下:

comp(n)=|X(n)|×modcoeff(n)×cos〔100πntpha(n)+phacoeff(n)〕(4)

comp=comp(n)n=1,3,5,7,9 (5)

式中:|X(n)|为谐波幅值;

pha(n)为谐波的初相位,它们由FFT算法计算得到;

modcoeff(n)为幅值系数;

phacoeff(n)为相位系数。

式(4)为单次谐波的补偿指令计算式,式(5)为系统需要补偿的所有谐波的总补偿指令计算式,它是各单次谐波补偿指令的简单累加。

幅值补偿系数modcoeff(n)和相位补偿系数phacoeff(n)可以通过对象的幅频、相频特性根据“等效逆”的原则简单地确定。具体来说,modcoeff(n)就是幅频特性频率对应点读数的倒数,phacoeff(n)就是相频特性频率对应点读数的负数。可以看出,谐波补偿器补偿系数的确定是非常简单的,这是本文所用控制方案的一大优点。

2 控制系统参数设计

2.1 FFT采样频率fs和分析窗长度L的确定

采用FFT算法进行实时频谱分析,采样频率fs和分析窗长度L的确定是非常重要的。假设所需要分析信号的最高频率为fmax。根据香农采样定律,只须满足

fs≥2fmax (6)

就可以使被分析信号在频域中不产生混叠。在这里,基波是50Hz,最高只需要分析到9次谐波,所以fmax=450Hz。为了留有一定的裕量,在实际系统中fs取1.6kHz。

分析窗长度L对于周期信号的频谱分析也是极其重要的,一般都把L取为被分析信号周期的整数倍,否则,会造成严重的频谱泄漏,大大降低频谱分析精度。显然,实际系统中被分析的误差电压信号周期就是基波周期,即为0.02s。所以就把L取为0.02s(即为周期的一倍)。

根据FFT的输入数据点数N的计算式:N=fs×L,以及采样频率fs和分析窗长度L的取值,可以得到N=32。这就是说,本控制系统须做32点的FFT。

2.2 幅值补偿系数和相位补偿系数的确定

在图2中,电压源U代表来自逆变桥的输出电压,电感L和电容C构成输出LC滤波器,电流源I代表负载汲取的电流,与滤波电感L串联的电阻r是滤波电感的等效串联电阻。由图2可知,在把逆变桥看作一个比例环节的情况下,的数学模型就是由输出LC滤波器构成的二阶系统。在本系统中,L=0.552mH,r=0.3Ω,C=135μF,所以数学模型为

G1(s)= (7)

它的离散化表达式为

G1(z)= (8)

图2 等效电路模型



评论


相关推荐

技术专区

关闭