基于物联网的滑坡地质灾害预警系统的设计
2 网络节点设计
2.1 利用ZigBee技术互联通信
某一监测点内部采用ZigBee技术进行组网通信,实现对监测区域的全方面感知与控制。ZigBee WiFi、Bluetooth、GPRS/GSM等常用无线通信技术的具体参数如表2所列。ZigBee具有成本低、体积小、功耗低、易于扩展、感应性强等特点。考虑到降雨型滑坡系统的监测网络节点较多、数据传输量不大,但覆盖面相对较广的特点,感知区域适合采用ZigBee技术进行互联通信。本文引用地址:https://www.eepw.com.cn/article/159418.htm
2.2 网络节点的硬件结构设计
网络节点是一个微型嵌入式系统,是构成数据采集与信息传输系统的基本单元,它能在较小的体积内集成多种功能,如数据采集、信息处理和无线数据收发等功能。网络节点一般由处理器模块、ZigBee通信模块、能量供应模块、传感器模块(协调节点可没有传感器模块)等模块构成。其中传感器模块作为整个系统的“感知器官”,负责监测区域内信息的采集和数据转换;处理器模块作为整个节点的“大脑”,主要负责对传感器模块、ZigBee通信模块的控制及整个节点的协调等;ZigBee通信模块作为网络节点的“耳朵+嘴巴”,负责与其他网络节点进行无线数据通信。其中终端节点仅包含Zigbee通信模块,协调器节点包含ZigBee通信模块和GPRS数据收发模块;能量供应模块则是节点的“心脏”,为网络节点的各个组成部分提供足够的动力和能量。
根据实际功能需求及部署特点,采用星型的无线网络分布模型,具有组网简单快捷、数据传输快等特点。在该模型下只需设计两类节点:终端节点和协调器节点,其结构分别如图2和图3所示。其中,协调器节点负责收集小范围内终端节点所采集的数据信息,而终端节点主要负责信息采集并实时发送至协调器节点。在网络节点的能量供应设计方面,由于协调器节点既要负责收集整个ZigBee网络的信息,又要将数据包通过GPRS模块转发出去,需要较大的功率,可采用太阳能或线路供电等模式。而终端节点只需要定时将采集的数据包发送至协调器节点,然后就迅速进入睡眠状态,其功率较小,可采用电池单独供电,或者通过线路与协调器节点共用供电系统。
在网络节点的操作系统选择方面,考虑到节点的任务量相对少,而数据传输的实时性要求较高,系统可选用一些实时性较强、可移植、可固化、可裁剪、抢先式多任务内核的操作系统,如Tiny OS、μC/OS-II等。
2.3 传感器的全面感知
在监测区域选择性部署电子自动雨量计,并在已发生(潜在发生)滑坡、泥石流所经河道的水坝前设置多个孔洞,每个孔洞下端部署一个液位传感器,在不同深度部署数个液体流速传感器,实时采集监测区域降雨及河道水流信息。其中,测量的有效降雨量作为山体滑坡危险度的第一指标,河道水位深度及流速作为辅助指标。同时,在易发断层裂缝处部署多个缝距传感设备,测量地表裂缝分割体之间相对张开、闭合、位错及垂直向升降的变化量,从而全面感知监测区域的动态变化。
3 预警模型
3.1 影响因子分析
在地形较为复杂的山区,降雨型滑坡等地质灾害一般由一系列外在诱发因子和内在地质条件等影响因子共同作用诱发产生。由于各因子在诱发灾害过程中的作用程度不同,内在则表现为各影响因子在数据模型中所占权重不同。由于很难获取大量的历史滑坡统计数据,本文结合相关资料,相关影响因子权值采用主观赋权法(也称为专家赋权法)来确定,即通过一定方法综合各位专家对各指标给出的权重进行的赋权。经统计,各影响因子的权重调整范围及初始值分配如表3所列。
物联网相关文章:物联网是什么
评论