新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 深入研究DDR电源(07-100)

深入研究DDR电源(07-100)

—— 深入研究DDR电源
作者:飞思卡尔公司 Norman KW Chan(营销经理)和WS Wong(系统工程师) 时间:2008-04-18来源:电子产品世界

  DDR存储器的发展历程

本文引用地址:http://www.eepw.com.cn/article/81733.htm

  由于几乎在所有要求快速处理大量数据(可能是计算机、服务器或游戏系统)的应用中都要求具有RAM(随机存储器),因而DDR存储器也变得日益重要,其应用也更加广泛。自问世以来,RAM就已经变得至关重要,主要因为它是一种能够保存易失性信息的存储器,并且可以以一种更快速、更直接的方式存取信息。当在数据计算的世界里谈及系统速度和效率时,这一点显得尤为重要。

  DDR SDRAM(双数据速率同步动态随机存储器),其可以通过在时钟周期的上升和下降沿上分别提取数据而使数据率加倍,现在看来它正发展成为最先进的RAM芯片集。这与以往的SDR SDRAM大不相同,因为后者仅能在时钟周期的一个边沿上提取数据。从图1可以看出,DRAM正在向着速度和数据传输率都不断提高的方向发展。

  近些年来,CPU时钟频率经历了指数增长,从而为RAM存储器的时钟频率增长提供了动力。

  在1997年,SD RAM在市场亮相,它可以取代DRAM和SRAM两种存储器并提供更快的时钟速率。这主要源于SDRAM具有更简捷的通信协议;所有指令、地址和数据都由一个单独的时钟信号控制并且工作在突发模式,可以在66MHz的时钟频率下突发一系列数据字。在1998年,SD RAM频率已经增长到100MHz 的突发脉冲速率。

  在1999年,英特尔和AMD间的企业竞争升级,在CPU时钟速度方面也不例外。处理器行业的蓬勃发展进一步加大了CPU时钟速度与其它系统组件间的差距。在此期间,尽管存储器总线速度已经全力达到了133MHz,但却仍然远远落后于CPU所能完成的速度,因此,总的来说,这也成为提高整体应用速度的瓶颈。

  为了解决这个问题,DDR RAM(双数据速率传输)的设计应运而生。DDR RAM允许分别在时钟的上升沿和下降沿上提取数据,从而加倍了时钟的有效传输速率。例如,一个100MHz的DDR时钟能够达到相当于200MHz时钟频率的峰值传输速率。这就是DDR1技术,其速度可高达400MHz。
下一代DDR,即我们所说的DDR2。DDR2技术将数据传输速率从400MHz提升到800MHz,数据总线为64位(8字节)。它不能与前一代DDR1存储器实现物理兼容,这种二代存储器现在已经是由RAM存储器厂商普遍生产的产品。

存储器相关文章:存储器原理



上一页 1 2 3 4 5 6 7 下一页

评论

技术专区

关闭