新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 正确选择电源的IC(07-100)

正确选择电源的IC(07-100)

——
作者:德州仪器(TI)高性能模拟和低功耗DC/DC应用工程师 William Hadden时间:2008-04-17来源:电子产品世界收藏

  首先,我们要检查各电源轨的功率要求,以确定应采用何种DC/DC转换器(如感应式转换开关、线性调节器或充电泵)。

本文引用地址:http://www.eepw.com.cn/article/81717.htm

  通常情况下,感应式转换开关是获取最高效率的最佳选择。而感应式转换开关电路需要一个转换组件、一个整流器、一个电感器以及若干输入和输出电容器。在很多应用中,可通过选用转换组件和整流器均可实现器件的高度集成以此来缩小解决方案的尺寸。而且,上述电路的效率通常介于80%至96%之间,具体数值要视负载情况而定。由于电感器的尺寸所致,因此开关转换器通常需要更大的空间,而且其价格一般也比较昂贵。另外,由于转换的存在,开关转换器也会从电感器和输出端的噪声中产生电磁干扰(EMI)辐射。

  低压降线性调节器(LDO)通过降低旁路组件两端的输入电压来降低直流电压。这种拓扑结构的优点在于只需配置三种部件(旁路组件、输入/输出电容器)。 通常来说,LDO比较便宜,而且产生的噪声比感应式转换开关低得多。由于该器件的输入电流和负载电流相同,因此采用该解决方案的效率等同于输出/输入电压的比值。然而,该方案的不足之处就是当输入/输出电压的比值较大时,则其效率较低。而且,所有的功率都被旁路组件消耗掉了,这也就是说,对于输入/输出差额悬殊的大电流应用而言,LDO并非是上佳之选。因为在大功率的应用中,需要配置散热装置,所以这将增大解决方案的尺寸。

  充电泵通过采用“快速”电容器(作为存储组件)来提高/降低直流电压或改变其极性,同时采用内部开关来连接电容器,使其能够进行所需的DC/DC转换。一般而言,充电泵要比感应式转换开关的成本低,而且不会产生电磁干扰。但是,充电泵的输出纹波通常比感应式转换开关大,充电泵在输出功率方面也受到限制。同时,其瞬态响应受到快速电容器充电速率的限制。另外,在输入电压和输出电压相当的应用中,充电泵的效率通常相当低。于是,为了进一步减小解决方案的尺寸,有许多多输出可供选择。这些通常包括集成的MOS场效应晶体管(MOSFET),同时至少要求配置有外部组件。而且,单就这些IC而言,其成本或许更为昂贵。但是,通过减少生产过程中必须安装到位的外部组件数量所获得的收益,往往会抵消前期付出的高昂成本。

  采用何种拓扑结构呢?

  在如图1所示的实际应用中,由于空间的限制,所以LDO将成为我们的首选。然而,由于功耗和效率的限制,实际情况并非总是如此。就拿5V、2A的电源轨来说吧,显而易见,需要选用一个开关转换器。在这种情况下,一个LDO的功耗为14W,功耗显然过高。然而,对这种电源轨而言,感应式降压转换器将是最佳选择。

  接下来,我们将对电池充电器进行分析。该电池通过5V的电源轨完成充电。我们采用的是充电电压为4.2V的单体锂离子电池。但是,由于实际应用中空间的局限性,因此,线性充电器将是一个不错的选择。因为只有当12V电源适配器正常工作时,电池充电器才能起作用,因此,其对充电效率的考虑并不多。然而,当所选择的电池峰值充电电流深度放电后,电压降至3V时,必须引起足够的重视,并限制电池充电器的散热。
  ·对于1.5V 的电源轨来说,选用开关降压转换器和LDO都行得通。但是,如果选用后者,效率将维持在25%左右的范围,而且需要100mA的输入电流。如果替换为降压转换器,效率将超过90%,而且需要的输入电流仅为30mA。另外,有许多外形非常小巧的开关转换器解决方案,而这些解决方案能够提供所需的输出功率。因此,LDO电路的大小是不可估量的。为了最大程度的延长电池的使用寿命,降压转换器当属理想之选。

  ·对于2.5V的电源轨而言,上述两种拓扑结构都可以发挥作用。由于需要的电流小、输入/输出差值较低,所以LDO堪称最小封装器件的上佳选择。

  ·对于1.25V的电源轨而言,开关转换器为最佳之选。由于所要求的负载高(300mA)、输入/输出差值大,所以LDO的功耗将非常大,而且效率极低。

  ·对于1.65V的电源轨而言,上述两种拓扑结构都行之有效。通过采用与1.5V电源轨相同的逻辑分析方法,我们得出了这样一个结论—选用开关转换器。但是,之后探讨的其他因素表明,应选用LDO。

  ·对于图1底部的3.3V电源轨而言,由于要求输出电流大,因此,选用开关转换器当属上佳之选。



关键词: TI IC

评论


相关推荐

技术专区

关闭