新闻中心

EEPW首页 > 设计应用 > 18位高精密D-S A/D转换器MCP3421及其应用

18位高精密D-S A/D转换器MCP3421及其应用

作者:贝能科技有限公司市场工程师 赵伟霞  微芯科技公司模拟应用工程师 李喻奎时间:2008-04-16来源:电子产品世界收藏

  概述

本文引用地址:http://www.eepw.com.cn/article/81598.htm

  在工业自动化控制以及测试、测量系统中都需要利用A/D转换器将外部物理量转换成数字量。D-S ADC与传统的逐次逼近型和积分型ADC相比,具有转换无偿小、价格便宜等特点,常被用来测量低速、转换精度要求高的传感器信号。

  Microchip公司的MCP3421与其它A/D转换器相比,特点主要表现在:全差分输入;18位分辨率;精密的连续自校准功能;可选择3.75、15、60或240SPS采样速率进行转换;可工作在连续转换或单次转换模式,在单次转换后的空闲期内自动进入待机模式,极大地减小了电流消耗;内部集成2.048V±0.05%精度,且温度漂移仅为5ppm/℃的基准电压源;可编程增益放大器()提供1/2/4/8倍增益,允许测量极小的信号并且具有很高的分辨率;内部集成振荡器电路并提供串行接口等。
  
  MCP3421封装形式与结构

  MCP3421是Microchip公司系列的一款18位分辨率器件,它采用SOT23-6封装,图1(a)为MCP342封装和引脚分布,图1(b)为其内部功能框图。MCP342内部采用了Microchip专利的差分开关电容D-S转换及数字滤波技术,专为需要高分辨率和低功耗的应用而设计,在这种应用中,空间和低功耗是设计的首要考虑因素。MCP3421可在2.7V至5.5V单电源下电压工作,并消耗很低的电流,在VDD=3V、单次转换、1SPS条件下,电流消耗仅为39uA(典型值)。


  
  MCP3421的工作原理

  MCP3421为一个全差分、18位分辨率具自校正功能的,内部包括D-S转换器、可编程增益放大器、时钟发生器和接口,以及2.048V电压基准源五大部分(参考图1(b))。MCP3421设计简单、极易配置,允许设计工程师通过最小配置获得精确的测量结果。

  D-S转换器

  MCP3421 采用Microchip专利的差分开关电容D-S转换及数字滤波技术,包括一个差分开关电容D-S调制器和一个数字滤波器。调制器测量差分模拟输入电压(经内部放大),并将其与内部电压基准相比较。MCP3421内部集成了2.048V电压基准。数字滤波器从调制器接收到高速数据流,经数字滤波器处理后输出一个数字代码。MCP3421输出的数字代码是增益、输入信号和内部电压基准的函数。在固定配置下,输出数字代码与两个模拟输入引脚间的电压差成正比。输出代码限定在一定的数目范围内,该范围取决于代表输出码所需的位数,同时也与采用的转换速率有关,如表1所示。

  MCP3421输出代码采用二进制补码的形式,最大的n位代码为,而最小的n位代码为。MCP3421输出的所有代码均右对齐,并且经过符号扩展。 表2 为不同转换模式下输出代码的格式:

  时钟振荡器

  MCP3421内部包括时钟振荡器,该时钟电路驱动D-S调制器和数字滤波器工作。用户可通过设置配置寄存器来选择MCP3421的采样速率为3.75、15、60或240SPS。MCP3421不能采用外部调制器输入时钟。

  自校准

  MCP3421集成了自校准电路。自校准系统连续工作并不要用户干涉。MCP3421在每次转换时进行失调电压和增益的自校准。这样在温度和电源电压变化时仍可提供可靠的转换结果。

  串行接口

  MCP3421通过I2C串行接口与主机进行通信。MCP3421只能作为从器件,并提供8个可选I2C地址。MCP3421的I2C接口支持标准(100Kbits/sec),快速(400Kbits/sec),高速(3.4Mbits/sec)三种模式,并于I2C总线协议完全兼容。

  用户可通过I2C接口读/写MCP3421内的配置寄存器,进而改变器件的工作模式并查询器件的工作状态。同时,I2C接口也用于读取转换后的数据代码。图2为设置配置寄存器的时序图。图3为18位模式下从MCP3421读取转换数据的时序图。



  MCP3421的应用

  MCP3421可广泛应用于各种需要低功耗和高精度A/D转换器的系统中,例如,基于热电偶或热电阻的温度测量;压力或流量的测量。MCP3421在这些应用电路中连接非常简单。以下部分简单介绍MCP3421的应用和连接。

  与单片机的连接

  MCP3421与具有I2C接口的单片机的连接方式非常简单。如图4所示的单片机测量系统中,MCP3421与其它器件(EEPROM、温度传感器)等共享I2C总线,并可以标准、快速或高速三种模式与单片机进行通信。由于I2C总线是一种漏极开路驱动,所以SCL和SDA线都需要上拉电阻。上拉电阻的大小取决于总线的工作速率和总线电容。

  输入端连接

  MCP3421提供全差分输入。外部输入信号可连接到VIN+和VIN-输入引脚。差分输入电压VIN(=VIN+-VIN-)被PGA放大后经D-S调制器转换成数字代码。MCP3421的输入引脚不能连接负输入电压。MCP3421差分输入和单端输入的连接如图5 所示。在单端输入时,VIN-引脚连接到地,此时输入信号范围为0V至2.048V。

  MCP3421与热电偶连接

  MCP3421可以与各种不同的传感器进行接口。图6为热电偶温度变送器的系统框图。由于MCP3421内部具有最大达8倍的PGA增益和2.048V的电压基准,因而可以直接与K型等热电偶连接。温度补偿通过采用外部的数字温度传感器(图中为MCP9800)来实现。MCP321转换后的数据和温度传感器检测到的温度值经单片机计算和线性化处理后,以电压或4-20mA电流环的方式传送到其它控制系统。

  在PGA增益=8和选择18位分辨率时,,完全可满足毫伏(mV)级电压输出的热电偶温度测量要求。利用高分辨率和低功耗的MCP3421 A/D转换器和Microchip的单片机、温度传感器、D/A转换器很容易地实现完整温度变送器电路设计。
  
  结语

  D-S A/D转换器适合于高分辨力、低功耗的测量系统应用。MCP3421作为一款18位分辨率、高集成度、小型封装的D-S A/D转换器,可以应用于温度、压力、流量等工业控制,以及测试/测量的应用中。简单、灵活的电路设计可以大大提高测量的精度和稳定性,并降低硬件成本,提高产品的性价比。

  参考文献:

  1.  Microchip Technology.18-Bit Analog-to-Digital Converter with  I2C Interface and On-Board Reference. DS22003B

  2.  Microchip Technology.MCP3421 SOT-23-6 Evaluation Board User誷 Guide.

上拉电阻相关文章:上拉电阻原理
数字滤波器相关文章:数字滤波器原理
热电偶相关文章:热电偶原理


评论


相关推荐

技术专区

关闭