新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 怎样采用多种单端信号驱动16位ADC

怎样采用多种单端信号驱动16位ADC

作者:时间:2013-08-20来源:网络收藏

本文引用地址:http://www.eepw.com.cn/article/258553.htm

匹配传感器输出和ADC输入范围可能很难,尤其是要面对当今传感器所产生的多种输出电压摆幅时。本文为不同变化范围的差分、单端、单极性和双极性信号提供简便但高性能的ADC输入驱动器解决方案,其中所有电路采用了 ADC单独工作或与LT6350 ADC驱动器一起工作来实现92dB SNR.

是一款低噪声、低功率、1Msps、,具备±2.5V的全差分输入范围。LT6350是一款轨至轨输入和输出的、低噪声、低功率单端至差分转换器/ADC驱动器,具备快速稳定时间。运用LT6350,0V至2.5V、0V至5V和±10V的单端输入范围可以很容易转换为的±2.5V全差分输入范围。

全差分驱动

图1显示了用于本文所述所有电路的基本构件。该基本构件用于至LTC2383-16模拟输入的DC耦合全差分信号。电阻器R1、R2和电容器C1将输入带宽限制到大约500kHz.电阻器R3和R4减轻ADC输入采样尖峰的影响,该尖峰可能干扰传感器或ADC驱动器输入。



图1:全差分驱动电路

这个电路对于具备低阻抗差分输出的传感器很有用。驱动AIN+和AIN–的共模电压必须等于VREF/2,以满足LTC2383-16的共模输入范围要求。

图1中的电路可以是AC耦合的,以在必要时,使ADC输入的共模电压与传感器相匹配。只需通过一个1k电阻器将AIN+和AIN–偏置到VCM(VCM=VREF/2)、通过一个10μF电容器将传感器输出耦合到AIN+和AIN–即可,如图2所示。



图2:AC耦合全差分驱动电路


当驱动LTC2383-16这类低噪声、低失真ADC时,选择合适的组件对保持高性能是至关重要的。这些电路中使用的所有电阻器的值都相对较低。这可保持较低的噪声和较短的稳定时间。建议使用金属薄膜电阻器,以减小由自热引起的失真。C1采用的是NPO电容器,因为这类电容器的电压系数较低,从而可最大限度地减小失真。

  单端至差分的转换

  当然,不是所有传感器的输出都是差分的。以下是一些用单端信号驱动LTC2383-16的方法。

  0V至2.5V单端输入

  图3所示电路将0V至2.5V单端信号转换为全差分±2.5V信号。这个电路还具备高阻抗输入,以便能用大多数传感器输出直接驱动该电路。如图2所示,通过AC耦合的VIN,VIN端的共模电压可以与ADC匹配。第二个放大器的共模电压在LT6350的+IN2引脚处设定。图4中的32k点FFT显示运用图3所示电路时LTC2383-16与LT6350合起来的性能。所测得的92dB SNR和-107dB THD与LTC2383-16的典型数据表规格参数紧密匹配。这表明,在信号通路中插入单端至差分转换器后,即使引起ADC规格参数劣化,裂化程度也是极小的。

  图3:单端至差分转换器

  图4:图3电路的FFT


上一页 1 2 下一页

关键词: 16位ADC LTC2383-16

评论


相关推荐

技术专区

关闭