新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于ARM9的液晶驱动终端设计

基于ARM9的液晶驱动终端设计

作者:时间:2014-05-27来源:网络收藏

1 引言

本文引用地址:http://www.eepw.com.cn/article/247437.htm

驱动终端是将控制器、微控制器等集成在一起.并将控制与图形界面显示等功能通过软件封装在一起.为用户开放操作接口、屏蔽液晶显示器的控制细节,使用户通过熟悉的接口(如RS232接口)发送预定义命令即可控制液晶显示,进行图形界面开发工作。

目前.已有的液晶驱动终端主要采用微控制器与前、后台软件结合的方法进行设计,该类终端只能够显示字模方式的图片.该种类型的终端显示数据存放在自带的NANDFlash中,在人机界面设计过程中对NAND Flash中的数据管理是以扇区为基本操作单元,图片下载需要专用的软件工具完成,增加了界面设计的逻辑复杂性与操作性。这里采用微控制器与 Linux操作系统结合的方法,设计出一种新型的液晶驱动终端。该终端通过FAT文件系统管理CF卡中数据资源,利用多线程技术实现串口命令解析与图型界面的显示,不仅能够显示字模与图片等数据资源,而且利用该设计方法可以实现调用MiniGUI图型库等资源,适用于工业测控、智能仪表等领域的人机界面设计。

2 系统组成及工作原理

系统主要有微控制器、存储单元、LCD控制器、CF卡接口与RS422通信接口组成,系统组成框图如图l所示。工作流程:系统上电后,微控制器从NOR Flash中读取、解压Linux内核与Ramdisk根文件系统到SDRAM中,律压完成后,启动Linux内核并挂载根文件系统;当软件环境初始化完成后启动应用程序,开始接收串口命令,应用程序接收到有效的串口命令后,图形界面数据通过Fmmebuffer接口传送给LCD控制器。



3 系统主要硬件模块设计

3.1 ARM9微控制器

系统采用ATMEL公司的AT91RM9200作为MCU,该处理器基于ARM920T内核,工作主频为180MHz,性能高达 200MVVs。AT91RM9200包括一个高速片上SRAM工作区及一个低等待时间的外部总线接口(EBI),完成片外存储器和内部存储器映射外设配置的无缝连接。EBI中设计专用电路以便SmartMedia、ComDACt Flash及NAND F1ash连接。系统使用一片MT公司的28F128J3型16 MB NOR Flash,用于存储Linux内核与根文件系统,使用2片HY57V281620来组成32位SDRAM接口。

3.2 液晶驱动接口

系统选用EPSON公司的显示控制器件S1D13506用于控制LCD的图像数据显示。S1D13506可与多种CPU总线兼容,支持最高为 16位数据宽度的LCD接口.可以在TFTLCD、CRT最高显示64 K颜色。它配置一个16位内存接口,支持最高2 MB的EDO-DRAM。系统中将S1D13506连接在AT91RM9200的BANK 3,数据总线宽度为16位.地址线A21与S1D13506M/R引脚相连,用于选择访问寄存器与显存。AT91RM9200访问S1D13506显存起始地址为0x30200000.寄存器起始地址为0x30000000。使用了GM71V18163型2MBDRAM作为显示存储,AT91RM9200 通过访问S1D13506数据地址空间,实现对DRAM的数据存储操作,使用50 MHz的有源晶振作为DRAM的总线时钟,25 MHz有源晶振作为LCD的像素时钟信号,支持640x480 60 HzTFT LCD显示,LCD行、场同步信号由S1D13506内部通过对25 MHz像素时钟分频得出。LCD显示控制硬件接口电路如图2所示。



3.3 CF卡存储接口

在图形界面的设计中需要运用到位图、字库等数据资源,系统通过FAT文件系统管理CF中数据,并且通过PC机将数据直接拷贝至CF卡。AT91RM9200与CF卡硬件接口连接如图3所示。



4 软件设计

4.1 整体软件架构

系统软件可以使用Linux、VxWorks等操作系统,也可使用从直接操作低层硬件的前、后台软件。使用前、后台方式的软件虽然能够实现对硬件的充分利用,但使用操作系统增强了系统的可维护性与扩展性。系统在运行和使用过程中需要管理CF卡中的数据以及应用程序需要多线程支持,众多操作系统中,开源的Linux操作系统具有较为完善的文件系统与网络协议族,并且能较好的支持多线程程序,可满足设计需求。该系统使用的Linux内核版本为 2.4.2l,交叉编译工具链为ARM-Linux-cross-2.95.3。系统软件架构如图4所示。系统中,无论应用程序调用POSIX接口直接控制LCD显示还是通过MiniGUI间接控制LCD,最终都要调用相应的液晶控制器驱动接口函数,因此如何设计出一个S1D13506特殊硬件的驱动程序是整个软件设计的重点。



4.2 Framebuffer驱动的实现

Framebuffer是Linux内核中的一种驱动程序接口.这种接El将显示设备抽象为帧缓冲区。在应用程序中.将其映射到进程地址空间开辟的存储区域中,通过对存储区域进行的数据读写操作可以直接的反映在LCD上。在Linux2.4版本的内核中,Framebuffer被抽象为 linuxdriversvide0下的fbcon.c文件,其主要依靠fb_info、fb_var_screeninfo、 fb_fix_screeninfo3个数据结构,这些结构定义在include/Linux/fb.h程序内。S1D13506基于 Framebuffer的设备驱动程序主要完成AT91RM9200 EBI总线的配置工作、S1D13506内部寄存器的初始化及Frambuffer中预定义的数据结构的填充。系统中使用的驱动程序是对EPSON公司 S1D13xxx系列显示控制器件Linux驱动程序修改完成。其初始化函数示意性代码如下:

int sldl3506fb_init()

{

init_9200_bank(); //初使化AT9lRM9200EBI总线

fb_info.RegAddr=(unsigned char*)ioremap_nocache(Ox300000000,0x200000);

fb_jnfo.VmemAddr=(unsigned char*)ioremap_nocache(0x30200000,Ox200000);

//将S1D13506的寄存器与显示存储的线性地址空间保存到显卡状态结构体

linux操作系统文章专题:linux操作系统详解(linux不再难懂)

linux相关文章:linux教程


led显示器相关文章:led显示器原理


晶振相关文章:晶振原理
调光开关相关文章:调光开关原理

上一页 1 2 下一页

关键词: ARM9 液晶

评论


相关推荐

技术专区

关闭