新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > MEMS技术概述

MEMS技术概述

作者:时间:2013-09-09来源:网络收藏

MEMS成为当今世界的研究热点,各国的科技工作人员将其作为一个独立的边缘学科站展开国际范围内的学术与工程研究。

MEMS的定义 是集多个微机构、微传感器、微执行器、信号处理、控制电路、通信接口及电源于一体的微型电子机械系统。起源于微电子技术,并在机械领域或领域拓宽和延技伸。有人将用于通信、多媒体、网络和智能等领域中的技术,形成了光 技术 和射术称为信息频 微波无线电通讯系统中的 。

研究的主要对象

MEMS的主要研究内容: 基础理论和技术的研究、MEMS材料和MEMS 的制造工艺研究。

基础理论和技术的研究

理论基础:一般的学科常常是先有了基础理论,然后才会有工程应用,但MEMS 技术却一种工程应用先于基础理论的技术学科,其工程实际应用往往超前于基础理论,因此MEMS中涉及到的基础理论研究有待于加强。这种现象并非在MEMS中独有,例如材料的塑性加工技术中的基础理论部分就比较薄弱,却也能够得到很好的工程应用。我们知道,当构件的几何尺寸缩小到毫米或微米量级时,很多宏观的理论已经不适用于,有许多宏观物理量需要重新定义,这也可能就是 纳米需要对微小型化的尺寸效应和技术 的魅力所在。因此理论基础做进一步研究,包括微结构学、微动力学、微流体力学、微摩擦学、微热力学、微电子学、微光学和微生物学等。

技术基础:基于 与传统机电系统在理论基础上的差异,它所涉及的技术基础研究也与传统机电系统不同。主要涉及到的研究领域有:微系统设计技术、微系统材料、复杂可动结构微细加工、微装配与封装、微测量、微系统的集成与控制和微宏接口等技术。

设计技术:主要研究设计方法 其中计算机辅助设计 是有力工具。计算机技术的进步使 技术在器件的设计中得到了广泛应用 有限元分析技术可以预测和模拟 器件的静态和动态性能。 设计应包括:器件模拟、系统校验、封装、优化、掩模板设计和过程规划等还应建立混合的机械、热和电气的耦合模型。但是 设计技术又不同于常规的机电系统设计,这是由于当机械的尺寸缩小时,由于表面的摩擦力增加可能会导致建模分析时会遇到许多机械本身无法工作。因此,进行新的问题,在实践中要开发快速的计算表面作用力算法、宏模型的建立、多物理场耦合分析等,并且可以采用 等软件。进行耦合场的分析等.

MEMS材料

MEMS材料包括用于敏感元件和致动元件的功能材料、结构材料和智能材料, 材料应具有良好机械、电气性能和适合微细加工的新材料。 中使用的结构材料通常是以硅为主体的半导体材料;功能材料包括压电材料、超磁致材料、光敏材料等;智能材料以形状记忆合金为主。此外还有玻璃、陶瓷等材料及其力学分析是 设计的重要方面,其研究的关键问题包括材料及物理性能的研究和 结构的力学分析与失效研究等。

MEMS的制造工艺是 的核心技术,也是 研究领域中最为活跃的部分,加工 器件的技术目前主要有以下三种。面向MEMS 的微细加工技术是在集成电路的基础上形成,先后有了超精密机械加工、深反应离子刻蚀、LIGA及准LIGA技术和分子装配技术等。其加工手段包括电子束、离子束、光子束、原子束、分子束、等离子、超声波、微波、化学和电化学等。MEMS研究已从基础研究领域进入开发使用阶段,目前,MEMS的应用研究对象主要包括微构件、微传感器、微执行器、MEMS专用 器件及系统等。这些研究成果的应用领域很广,涉及到信息通讯、汽车工业、生物医学和航空航天等。因此有着广泛的应用前景。

MEMS加工技术

如前所述, 加工技术主要分为三种,分别以美国为代表集成电路技术、日本以精密加工为特征的MEMS 技术和德国的LIGA技术.

第一种是以美国为代表的硅基 技术,它是利用化学腐蚀或集成电路工艺技术对硅材料进行加工,形成硅基器件。这种方法可与传统的 工艺兼容,并适合廉价批技术量生产,已成为目前的硅基主流.各向异性腐蚀技术就是利用单晶硅的不同晶向的腐蚀速率存在各向异性的特点而进行腐蚀技术,其主要特点是硅的腐蚀速率和硅的晶向、搀杂浓度及外加电位有关。它靠调整器件结构,使它和快腐蚀的晶面或慢腐蚀的晶面方向相适应,利用腐蚀速度依赖杂质浓度和外加电位这一特性可以实现适时停止腐的精密三维结构。固相键合技术就是不用液态粘连剂而将两块固体材料键合在一起,且键合过程中材料始终处于固相状态的方法。主要包括阳极键合 静电物理作用 和直接键合两种。阳极键合主要用玻璃键合,可以使硅与玻璃两者的表面之间的距离达到硅分子级。直接键合技术 依靠化学键 主要用于硅 硅键合,其最大特点是可以实现硅一体化微机械结构,不存在边界失配的问题。表面牺牲层技术由美国加州大学分校开发出来的,它以多晶硅为结构层,二氧化硅为牺牲层。表面牺牲层技术与集成电路技术最为淀积的基础上,利用光刻、腐蚀等相似,其主要特点是在薄膜:常用工艺制备微机械结构,最终利用选择腐蚀技术释放结构单元,获得可动结构。最成功的表面牺牲层技术目前采用多晶硅薄膜作结构材料、二氧化硅薄膜作牺牲层材料,该工艺为薄膜工艺,最大的优点是容易将机械结构与处理电路批量集成制造。

第二种是以日本为代表的利用传统机械加工手段,用大机器制造小机器,再用小机器制造微机器的方法。此加工方法可以分为两大类:超精密机械加工及特种微细加工。超精密机械加工以金属为加工对象,用硬度高于加工对象的工具,将对象以下。此材料进行切削加工,所得的三维结构尺寸可在技术包括钻石刀具微切削加工、微钻孔加工、微铣削加工及微磨削与研磨加工等。特种微细加工技术是通过加工能量的直接作用,实现小至逐个分子或原子的切削加工。特种加工是利用电能、热能、光能、声能及化学能等能量形式。常用的加工方法有:电火花加工、超声波加工、电子束加工、激光加工、离子束加工和电解加工等。超精密机械加工和特种微细加工技术的加工精度已达微

左右的齿轮等微机米、亚微米级,可以批量制作模数仅为械元件,以及其它加工方法无法制造的复杂微结构器件。

第三种是以德国为代表的 LIGA技术,它是利用X 射线光刻技术,通过电铸成型和铸塑工艺,形成深层微结构的方法。LIGA技术可以加工各种金属、塑料和陶瓷等材料,得到大深宽比的精细结构,其加工深度可达几百微米。LIGA技术与其它立体微加工技术相比有以下特点:可制作高度达数百至1000UM,深宽比可大于200 ,侧壁·可平行偏离在亚微米范围内的三维立体微结构;


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭