新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 光存储技术发展方向和关键技术

光存储技术发展方向和关键技术

作者:时间:2011-11-06来源:网络收藏

一、的发展方向

以光学、集成光学、光子效应、体全息技术、光感生或磁感生等原理为基础的新一代将朝着以下几个方向发展:

(1)利用光学非辐射场与光学超衍射极限分辨率的研究成果,进一步减小记录信息符尺寸。因光束照射到物体表面时,无论透射或反射都会形成传播场(传播波)和非辐射(隐失波)。传播波携带着物体结构的低频信息,容易被探测器探测。隐失波携带描述物体精细结构的高频信息,沿物体表面传播。只要把这一部分信息扑捉到,就可提高系统的分辨率。

(2)采用近场光学原理设计的光学系统,使数值孔径超过1.0,相当于探测器进入介质的辐射场,从而能够得到超精细结构信息,突破衍射极限,获得更高的分辨率,可使经典光学显微镜的分辨率提高两个数量级,面密度提高4个数量级。

(3)以光量子效应代替目前的光热效应实现数据的写入与读出,从原理上将存储密度提高到分子量级甚至原子量级,而且由于量子效应没有热学过程,其反应速度可达到皮秒量级(1O-12秒),另外,由于记录介质的反应与其吸收的光子数有关,可以使记录方式从目前的二存储变成多值存储,使存储容量提高许多倍。

(4)三维多重体全息存储,利用某些光学晶体的光折变效应记录全息图形图像,包括二值的或有灰阶的图像信息,由于全息图像对空间位置的敏感性,这种方法可以得到极高的存储容量,并基于光栅空间相位的变化,体全息存储器还有可能进行选择性擦除及重写。

(5)利用当代物理学的其它成就,包括光子回波时域相干光子存储原理、光子俘获存储原理、共振荧光、超荧光和光学效应、光子诱发光致变色的光化学效应、双光子三维体相光致变色效应,以及借助许多新的工具和技术,诸如扫描隧道显微镜(STM)、原子力显微镜(AFM)、光学集成技术及微光纤阵列技术等,提高存储密度和构成多层、多重、多灰阶、高速、并行读写海量存储系统。实验已证明目前的技术可使光存储密度达到40-100Gbits/in2。

二、光存储发展的关键技术

(1)高密、高效、高速的母盘刻录技术

采用短波激光和大数值孔径的物镜,可使道间距减小,比特长度减小,从而可提高光盘的刻录密度;采用脉宽调制,可显著提高记录效率。

(2)DVD单面盘的精密注塑及双盘的封装技术

将DVD母盘、模板生产线挑选出的合格模板,用精密注塑机注塑成形,制得的DVD半成品经适当冷却,送入溅射室,根据不同要求,分别溅射金或铅,然后进行粘合剂旋涂、封装、紫外光固化、在线检测、商标印刷等,制成DVD只读光盘。

(3)光盘记录介质

DVD-RAM光盘是否稳定可靠,记录介质是关键,而材料设计能否满足高速存储的要求,又取决于记录介质能否在两个稳定态之间实现快速可逆相变。国内外传统相变介质材料设计都是基于激光的热效应,信息写入用液相快淬实现;信息的擦除用晶核形成、晶粒长大来完成。由于热效应是能量积累过程,写入一个比特需较长时间,约几十纳秒,而且介质在经历几十万次的写/擦循环后会出现信噪比下降的热疲劳。随着记录激光采用短波长,激光的热效应逐渐减弱,而激光光子的激发作用变得突出;所以新的材料设计基于激光的光效应。对半导体类型介质来讲,写入一个比特只要几十皮秒,使记录速率获得数量级的提高。这种基于非线性光学变化效应的记录介质称为光记录介质,它可以是无机材料,也可以是有机材料或无机-有机复合材料。



评论


相关推荐

技术专区

关闭