新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 常用电源设计技巧

常用电源设计技巧

作者:时间:2013-01-17来源:网络收藏

  一 反激式中的铁氧体磁放大器

  对于两个输出端都提供实际功率(5 V 2 A和12 V 3 A,两者都可实现± 5%调节)的双路输出反激式来说,当电压达到12 V时会进入零负载状态,而无法在5%限度内进行调节。线性稳压器是一个可实行的解决方案,但由于价格昂贵且会降低效率,仍不是理想的解决方案。我们建议的解决方案是在12 V输出端使用一个磁放大器,即便是反激式拓扑结构也可使用。

  为了降低成本,建议使用铁氧体磁放大器。然而,铁氧体磁放大器的控制电路与传统的矩形磁滞回线材料(高磁导率材料)的控制电路有所不用。铁氧体的控制电路(D1和Q1)可吸收电流以便维持输出端供电。该电路已经过全面测试。变压器绕组设计为5 V和13 V输出。该电路在实现12 V输出± 5%调节的同时,甚至还可以达到低于1 W的输入功率(5 V 300 mW和12 V零负载)。

常用电源设计技巧

  二 使用现有的消弧电路提供过流保护

  考虑一下5 V 2 A和12 V 3 A反激式。该电源的关键规范之一便是当12 V输出端达到空载或负载极轻时,对5 V输出端提供过功率保护(OPP)。这两个输出端都提出了± 5%的电压调节要求。

  对于通常的解决方案来说,使用检测电阻会降低交叉稳压性能,并且保险丝的价格也不菲。而现在已经有了用于过压保护(OVP)的消弧电路。该电路能够同时满足OPP和稳压要求,使用部分消弧电路即可实现该功能。

  从下图可以看出,R1和VR1形成了一个12 V输出端有源假负载,这样可以在12 V输出端轻载时实现12 V电压调节。在5 V输出端处于过载情况下时,5 V输出端上的电压将会下降。假负载会吸收大量电流。R1上的电压下降可用来检测这一大量电流。Q1导通并触发OPP电路。

常用电源设计技巧

  三 有源并联稳压器与假负载

  在线电压AC到低压DC的产品领域中,反激式是目前最流行的拓扑结构。这其中的一个主要原因是其独有的成本效益,只需向变压器次级添加额外的绕组即可提供多路输出电压。

  通常,反馈来自对输出容差有最严格要求的输出端。然后,该输出端会定义所有其它次级绕组的每伏圈数。由于漏感效应的存在,输出端不能始终获得所需的输出电压交叉稳压,特别是在给定输出端因其它输出端满载而可能无负载或负载极轻的情况下更是如此。

  可以使用后级稳压器或假负载来防止输出端电压在此类情况下升高。然而,由于后级稳压器或假负载会造成成本增加和效率降低,因而它们缺乏足够的吸引力,特别是在近年来对多种消费类应用中的空载和/或待机输入功耗的法规要求越来越严格的情况下,这一设计开始受到冷落。图1中所示的有源并联稳压器不仅可以解决稳压问题,还能够最大限度地降低成本和效率影响。

常用电源设计技巧

用于多路输出反激式转换器的有源并联稳压器

  该电路的工作方式如下:两个输出端都处于稳压范围时,电阻分压器R14和R13会偏置三极管Q5,进而使Q4和Q1保持在关断状态。在这样的工作条件下,流经Q5的电流便充当5 V输出端很小的假负载。

  5 V输出端与3.3 V输出端的标准差异为1.7 V。当负载要求从3.3 V输出端获得额外的电流,而从5 V输出端输出的负载电流并未等量增加时,其输出电压与3.3 V输出端的电压相比将会升高。由于电压差异约超过100 mV,Q5将偏置截止,从而导通Q4和Q1并允许电流从5 V输出端流到3.3 V输出端。该电流将降低5 V输出端的电压,进而缩小两个输出端之间的电压差异。

  Q1中的电流量由两个输出端的电压差异决定。因此,该电路可以使两个输出端均保持稳压,而不受其负载的影响,即使在3.3 V输出端满载而5 V输出端无负载这样最差的情况下,仍能保持稳压。设计中的Q5和Q4可以提供温度补偿,这是由于每个三极管中的VBE温度变化都可以彼此抵消。二极管D8和D9不是必需的器件,但可用于降低Q1中的功率耗散,从而无需在设计添加散热片。

  该电路只对两个电压之间的相对差异作出反应,在满载和轻负载条件下基本不起作用。由于并联稳压器是从5 V输出端连接到3.3 V输出端,因此与接地的并联稳压器相比,该电路的有源耗散可以降低66%。其结果是在满载时保持高效率,从轻负载到无负载的功耗保持较低水平。

  四 采用StackFET的高压输入

  使用三相交流电进行工作的工业设备常常需要一个可以为模拟和数字电路提供稳定低压直流电的辅助电源级。此类应用的范例包括工业传动器、UPS系统和能量计。

  此类电源的规格比现成的标准开关所需的规格要严格得多。不仅这些应用中的输入电压更高,而且为工业环境中的三相应用所设计的设备还必须容许非常宽的波动—包括跌落时间延长、电涌以及一个或多个相的偶然丢失。而且,此类辅助电源的指定输入电压范围可以达到57 VAC至580 VAC之宽。

  设计如此宽范围的可以说是一大挑战,主要在于高压MOSFET的成本较高以及传统的PWM控制环路的动态范围的限制。StackFET技术允许组合使用不太昂贵的、额定电压为600V的低压MOSFET和Power Integrations提供的集成电源控制器,这样便可设计出简单便宜并能够在宽输入电压范围内工作的开关电源。

常用电源设计技巧

采用StackFET技术的三相输入3W开关电源

  该电路的工作方式如下:电路的输入端电流可以来自三相三线或四线系统,甚至来自单相系统。三相整流器由二极管D1-D8构成。电阻R1-R4可以提供浪涌电流限制。如果使用可熔电阻,这些电阻便可在故障期间安全断开,无需单独配备保险丝。pi滤波器由C5、C6、C7、C8和L1构成,可以过滤整流直流电压。

  电阻R13和R15用于平衡输入滤波电容之间的电压。

  当集成开关(U1)内的MOSFET导通时,Q1的源端将被拉低,R6、R7和R8将提供栅极电流,并且VR1到VR3的结电容将导通Q1。齐纳二极管VR4用于限制施加给Q1的栅极源电压。当U1内的MOSFET关断时,U1的最大化漏极电压将被一个由VR1、VR2和VR3构成的450 V箝位网络箝位。这会将U1的漏极电压限制到接近450 V。与Q1相连的绕组结束时的任何额外电压都会被施加给Q1。这种设计可以有效地分配Q1和U1之间的整流输入直流电压和反激式电压总量。电阻R9用于限制开关切换期间的高频振荡,由于反激间隔期间存在漏感,箝位网络VR5、D9和R10则用于限制初级上的峰值电压。

  输出整流由D1提供。C2为输出滤波器。L2和C3构成次级滤波器,以减小输出端的开关纹波。

  当输出电压超过光耦二极管和VR6的总压降时,VR6将导通。输出电压的变化会导致流经U2内的光耦二极管的电流发生变化,进而改变流经U2B内的晶体管的电流。当此电流超出U1的FB引脚阈值电流时,将抑制下一个周期。输出稳压可以通过控制使能及抑制周期的数量来实现。一旦开关周期被开启,该周期便会在电流上升到U1的内部电流限制时结束。R11用于限制瞬态负载时流经光耦器的电流,以及调整反馈环路的增益。电阻R12用于偏置齐纳二极管VR6。

  IC U1 (LNK 304)具有内置功能,因此可根据反馈信号消失、输出端短路以及过载对该电路提供保护。由于U1直接由其漏极引脚供电,因此不需要在变压器上添加额外的偏置绕组。C4用于提供内部电源去耦。

  五 使用TopSwitch.-GX设计正激式转换器

  该电路能确保变压器在每个周期进行复位,因此可大大简化使用TopSwitch-GX设计正激式转换器的过程。

常用电源设计技巧

正激式转换器复位检测方案

  检测电路与正激式转换器偏置绕组配合使用可以检测关断期间的电压波形。当此间电压较高时,信号会应用于TopSwitch-GX L引脚,使其断开与S引脚的连接,从而抑制内部MOSFET开始另一个导通周期。当偏置绕组上的电压信号开始衰弱时,即表示变压器已经复位,L引脚


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭