新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于Agilent ADS仿真软件的高效GaN宽禁带功率放大

基于Agilent ADS仿真软件的高效GaN宽禁带功率放大

作者:时间:2012-02-19来源:网络收藏

0 引言

  半导体功率器件按材料划分大体经历了三个阶段。第一代半导体功率器件以Si双极型功率晶体管为主要代表,主要应用在S波段及以下波段中。Si双极型功率晶体管在L波段脉冲输出功率可以达到数百瓦量级,而在S波段脉冲功率则接近200W。第二代半导体功率器件以GaAs场效晶体管为代表,其最高工作频率可以达到30~100 GHz。GaAs场效应晶体管在C波段最高可输出功率接近100W,而在X波段则可达到25 W。第三代半导体功率器件以SiC场效应晶体管和GaN高电子迁移率晶体管为主要代表。同第一代、第二代半导体材料相比,SiC和GaN半导体材料具有宽禁带、高击穿场强、高饱和电子漂移速率以及抗辐射能力强等优点,特别适合应用于高频、高功率、抗辐射的功率器件,并且可以在高温恶劣环境下工作。由于具备这些优点,宽禁带半导体功率器件可以明显提高电子信息系统的性能,广泛应用于人造卫星、火箭、雷达、通讯、战斗机、海洋勘探等重要领域。

  本文基于Agilent 设计实现一款宽禁带器,详细说明设计步骤并对放大器进行了测试,结果表明放大器可以在2.3~2.4 GHz内实现功率15W以上,附加效率超过67%的输出。

  1 GaN宽禁带器的设计

  1.1 放大器设计指标

  在2.3~2.4 GHz工作频段内,要求放大器连续波工作,输出功率大于10 W,附加效率超过60%。

  1.2 功率管的选择

  根据放大器要求的设计指标,设计选用的是某进口公司提供的SiC基GaN宽禁带功率管,其主要性能参数见表1。

  


  1.3 放大器电路设计

  图1为器原理框图。图1中,IMNBias和OMNBias分别为输入匹配网络及输入偏置电路和输出匹配网络及偏置电路,VGS和VDS分别为栅极-源极工作电压和漏极-源极工作电压。采取的设计思路是:对功率管进行直流分析确定放大器静态工作电压;进行稳定性分析和设计;利用源牵引(Source Pull)和负载牵引(Load Pull)方法确定功率管匹配电路的最佳源阻抗ZS和最佳负载阻抗ZL(ZS和ZL的定义见图1);

  根据获得的源阻抗与负载阻抗进行输入、输出匹配电路设计以及偏置电路设计;加工、调试及改版。

  1.3.1 直流分析

  对功率放大器进行直流分析的目的是通过功率管的电流-电压(I-V)曲线确定功率管的静态工作电压。由于厂家提供了功率管的模型,因此设计中直接利用该模型进行仿真设计(下同)。

  

  图2为在Agilent 软件中对器件模型进行直流分析的结果。根据厂家给出的器件规格参数以及图2中的I-V曲线,选用VDS=28 V,VGS=-2.5 V作为放大器的工作电压。为使放大器能够实现较高的效率,这里选取静态电压让放大器在C类条件下工作。

  1.3.2 稳定性分析

  稳定性是放大器设计中需要考虑的关键因素之一,它取决于晶体管的S参数和置端条件。功率放大器的不稳性将产生不希望出现的寄生振荡,导致结果失真,甚至设计失败。因此,在进行放大器阻抗匹配电路设计之前,必须进行稳定性分析与设计。

  

  图3给出了功率管稳定系数随频率的变化曲线。图3中,稳定系数K与D分别定义为:

  

基于Agilent ADS仿真软件的高效GaN宽禁带功率放大

  从图3可以看出,在设计频段内稳定系数K和D分别满足大于1和小于

波段开关相关文章:波段开关原理



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭