新闻中心

EEPW首页 > 模拟技术 > 设计应用 > ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

作者:时间:2013-10-09来源:网络收藏

电路功能与优势

无论是用于直接变频应用还是作为上变频器用于第一中频(IF),通常都会有一些增益直接施加在之后。本文将介绍如何选择合适的驱动器放大器,以便在 的输出端提供第一级增益。图1所示器件为 ADL5375 IQ调制器和 ADL5320 驱动器放大器。这两款器件在系统性水平方面匹配良好;也就是说,它们具备同等性能,因此任何一方都不会造成整体性能下降。由于这些器件的动态范围匹配良好,因此建议在IQ调制器与RF驱动器放大器之间进行简单的直接连接,器件之间无需任何衰减。

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

图1. 带输出的IQ调制器电路原理图

电路描述

ADL5375 是一款通用型高性能IQ调制器,输出频率范围是400 MHz至6 GHz。由于具备低噪声和750 MHz的宽输入基带带宽(3 dB),因此可通过多种调制和带宽的信号来驱动该器件。这些输入信号能够以直流或复数中频为中心。

与 ADL5375 的LO接口为1XLO型,即输出频率和LO频率相等(当基带信号以直流为中心时)。

系统级计算和RF放大器选择

在1 GHz至2 GHz的频率范围内, ADL5375 的输出压缩点(OP1dB)和三阶压缩点(OIP3)分别为10 dBm和25 dBm左右。在选择RF放大器以便在IQ调制器之后提供增益时,必须选择输入P1dB和输入IP3等于或略高于这些数值的器件。如果所选器件的输入P1dB和输入IP3较低,则会导致级联性能降低;如果这两项规格明显高于ADL5375,却不会带来任何好处,并且可能会造成信号链的总电源电流出现不必要增加。

ADL5320是一款驱动器放大器(需要外部调谐元件的RF放大器),额定工作范围是400 MHz至2700 MHz。采用5 V电源供电时,其功耗为104 mA(也可以采用低至3.3 V的电源供电,此时功耗和性能都有所下降)。

表1显示了1900 MHz条件下 ADL5375 IQ调制器折合到输出端的IP3 (OIP3)和P1dB (OP1dB)以及 ADL5320驱动器放大器折合到输入端的规格。两种情况下,IQ调制器折合到输出端的规格与放大器折合到输入端的规格之间均相差3 dB左右。

表1. 1900 MHz条件下 ADL5375 IQ调制器与 ADL5320 驱动器放大器的IP3和P1dB规格

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

图2显示了2140 MHz条件下IQ调制器与驱动器放大器的仿真级联性能。此仿真利用 simRF 设计工具来完成。值得注意的是,调制器的OIP3 (24.2 dBm)与复合OIP3 (36.5 dBm)之差12.3 dB刚好略小于 ADL5320 驱动器放大器的增益(13.7 dB)。这表明驱动器放大器对总体OIP3的影响非常小。

ADI实验室电路:如何在IQ调制器的输出端提供固定功率增益

图2. 显示了ADL5375与ADL5320级联性能的simRF设计工具屏幕截图

图3显示了IQ调制器输出端与复合电路输出端所测OIP3与输出功率(POUT)的关系图。两条OIP3曲线轮廓的形状非常相似,只在输出功率和OIP3方面有所偏移。这进一步表


上一页 1 2 3 4 下一页

评论


相关推荐

技术专区

关闭