关 闭

新闻中心

EEPW首页 > 工控自动化 > 设计应用 > 基于改进的LM算法的可见光定位研究

基于改进的LM算法的可见光定位研究

作者:潘富圣,黄世震时间:2020-11-19来源:电子产品世界收藏
编者按:作者简介:潘富圣 ,男,福建南平人,硕士研究生,主要研究方向为嵌入式系统。黄世震 ,男,福建闽清人,博士,副研究员,硕士生导师,研究方向为嵌入式系统、气敏元器件等。

为了能充分利用冗余信息,以提高定位精度与实用性,本文提出了一种基于Levenberg-Markuardt(LM)算法的方法。该方法主要通过将非线性奇异方程组转化为无约束最优化函数,再利用技巧修正的获得全局收敛解。同时,本文还针对LED灯进行辐射分析,提出了对应的信道模型。结果表明,该模型与广义朗伯模型具有一致性,且μ值选取正确时算法最少只需17次迭代,而基于此的定位系统在1.48m x 1.51m x 1.65m的实际定位空间中达到了10cm的精度水平。

本文引用地址:http://www.eepw.com.cn/article/202011/420493.htm

近年来,随着数据业务和多媒体业务的快速增加,人们对定位与导航的需求日益增大[1]。面对全球卫星定位系统(GPS)无法在室内获得良好效果的窘境[2],Wi-Fi定位[3]、蓝牙定位[4]、RFID定位[5]等一系列以电磁波作为信息媒介的技术被研究者们相继提出。定位技术作为技术的一种,在电磁辐射、频谱资源、能量损耗和

安全性等方面具有明显的优势[6]。因此,针对可见光定位的研究具有现实意义。

目前,已有众多学者分享了在可见光定位领域

的研究成果。文献[7]提出了一种基于自适应混合蛙跳算法的可见光定位方法,虽然启发式算法具有优越的全局搜索能力,但是获得全局收敛解却需要大量计算时间,因此并不适用于嵌入式设备。文献[8]提出了一种基于融合神经网络与指纹的可见光定位算法,虽然算法在仿真条件下能得到极高的精度,但是由于BPNN神经的输入数量是固定的,在复杂的定位条件下算法可能无法灵活的运用冗余光源信息而导致鲁棒性不强。

为解决以上问题,本文提出了一种基于改进的Levenberg-Markuardt算法的可见光定位方法,该方法可以高效的利用有效冗余光源信息,同时以二阶收敛速度获得全局收敛解。其次,针对算法的非负参数的选取进行了研究,证明取合适值时算法迭代次数最少可达17次。此外,针对目前市面常用的几种灯型,本文从辐射度学基本原理出发,推导出不同灯型的VLC信道模型,以期提高可见光定位的适用性。

1  模型研究

1.1 贴片式LED灯的VLC信道模型

不同封装下的LED具有不同的辐照模式[9],为了用一种模型来描述多种不同的辐照模式,文献[10]中F. R. Gfeller等人提出了广义朗伯模型的概念,模型中辐射瓣模式数m作为描述辐射集中程度的一个参量,则在n盏LED下的模型式为

image.png (1)

式中:为加性噪声;为光滤波器增益;而传输函数为可表示为

image.png(2)

式中:与如图1所示。

1.2 带反射罩的LED灯的VLC信道模型

灯罩需要被设计为漫反射体[11]。根据朗伯体的定义,灯罩可以看成一个朗伯型发光体。

假设接收器处于距离LED灯R米远的位置上,接收器的每一个面源所接收到的光线如图1所示。基于漫反射灯罩是朗伯体这一前提,面元所感受到的光线亮度为恒定值,根据辐射亮度的定义,我们可以得到接收功率微元为

image.png (3)

式中:为漫反射罩的发光面元。当R>>l时,为一个常数,而接收面元约为接收器面积,根据朗伯体辐射亮度与辐射射出度的关系,将进行积分可得

image.png (4)

式中:为辐射射出度;为灯罩面积。当漫反射罩为一直径远小于信道距离的平面圆时,该式即为广义朗伯体模型m=1时的情形。

最终得到带平面漫反射罩LED灯的信道传输函数为

image.png(5)

2   算法实现

可见光定位的应用场景一般是大型商场超市、地下停车库、矿道等空旷的场地[12]。灯作为一种照明设备其布局是紧凑密集的,但通常定位算法只需三盏光源便可确定出具体位置[13]。为了能够高效的利用这些冗余信息,本文提出了利用RSS的技巧修正的LM定位算法。

2.1构建目标函数

本次实验主要采用带有平面反射罩的LED灯作为定位光源。在忽略反射影响[14]的条件下 ,将模型进一步化简可得到第n盏LED灯下以坐标x为自变量的定位函数为

(6)

式中:为光源坐标;为光源辐射功率与接收辐射功率的根号比,其式如下

(7)

将n个定位函数改写成无约束优化函数为

(8)

可以推得,必然有最小值且最小值为0,而让等式成立的解x即为带有最小二乘性质的最优解。

2.2 Levenberg-Markuardt算法

的具体迭代过程与牛顿法类似。相比于高斯牛顿法,其通过引进非负参数,克服了目标函数的雅可比阵几乎奇异或坏条件时牛顿步所带来的困难[15]。的迭代单步为

(9)

式中,表示为目标向量x一个搜索方向,其式为

(10)

式中,雅可比阵定义为

(11)

具体表达式带入上式后,不难看出以n盏LED灯进行定位时其展开式为

(12)

由上式可以看出,LM定位算法的输入量是可变的,这意味着,算法可灵活地运用有效冗余信息进行定位。当n>3时算法可收敛于确定解,且当n越大时收敛解的准确度越高[16]

2.3改进的Levenberg-Markuardt算法

为了避免陷入局部极小值,使算法获得全局收敛解,可以引入半径对非负参数进行修正。

(13)

式中:二范数部分为的更新规则,不同的更新规则对于算法的收敛性能影响很大。而算法将以如下规则迭代。

(14)

(15)

更新准则为实际下降量于模型下降量之比,其式如下

(16)

式中:模型定义为。

image.png

图1 平面反射罩LED灯的辐射场景

3 实验与结果分析

在1.48m x 1.51m x 1.65m的空间中搭建定位环境,四盏3W白光LED灯泡分别安装在四个上顶点处并分别以200Hz、300Hz、400Hz、500Hz的频率闪烁,而产生的混频光信号利用OPT101进行光电转换,模数转换后在STM32F407平台进行测试实验。

3.1 算法测试

为了探究选取何种形式时,LM算法对式(8)的解算性能最佳,将STM32F407获取的五个定位点数据并传回PC端,在Matlab环境下进行LM算法的解算过程。实验时记录算法迭代次数,并以此作为判断准则。

参数方面,取m、、、分别为1e-6、1e-4、0.25、0.75,设置最大迭代次数为100,终止条件为<1e-5,其中,初始向量x中z轴坐标应尽可能大于真实高度。

表1 LM算法迭代次数

定位点




1

29

52

100

2

100

100

100

3

100

100

100

4

100

100

100

5

100

100

100

表2 改进的LM算法迭代次数

定位点




1

19

17

18

2

46

35

43

3

46

38

40

4

46

33

38

5

45

37

43

由表1与表2可以看出,LM算法迭代所用次数基本超过100次,而改进的LM算法则在有限次数内满足迭代退出条件。

结果表明,LM算法对于定位方程的解算陷入局部极小值而无法跳出循环,而改进的LM算法则可以获得满足精度条件的全局极小值。同时,改进的LM算法的非负参数取时,收敛所用的迭代次数最小。

3.2 定位测试

在真实定位空间中,选取15个点进行定点精度测试,如图2所示。

结果表明,在三维空间中定位的均方根误差(RMSE)达到10cm左右的水平,而定位数据波动的平均标准差在6.7cm左右的水平。

4 总结

算法方面,本文提出基于改进LM算法的可见光定位方法相比于神经网络,理论上拥有更好的灵活性与鲁棒性,而相比于启发式算法,实际中选取最优更新规则时算法最快只需要17步的迭代便可以收敛到全局最优解,因此更适合嵌入式设备。

值得注意的是相比于仿真结果,真实环境下所得到的RMSE有所增大,这说明模型并非完美,而能让可见光定位模型适应更复杂多变的实际环境,应是继续研究的重点。

0.png

图2 数据分布图

参考文献:

[1]   高燕龙, 施安存, 张运方, 等. 基于白光LED的室内高精度定位算法的实现[J]. 半导体光电, 2015,36(01):141-144.

[2]   姜西瑞. 基于GPS和GSM/GPRS的定位系统的设计与实现[D]. 中国科学院研究生院(计算技术研究所), 2006.

[3]   He X, Badiei S, Aloi D, et al. WiFi iLocate: WiFi based indoor localization for smartphone: 2014 Wireless Telecommunications Symposium, 2014[C].

[4]   ..Schuermann V, Mann T, Buda A, et al. Integrating bluetooth localization into existing TCP/IP networks: 2009 IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2009[C].

[5]   Ahmad M Y, Mohan A S. RFID reader localization using passive RFID tags: 2009 Asia Pacific Microwave Con- ference 2009 [C].

[6]   董文杰, 王旭东, 吴楠, 等. 基于LED光强的室内可见光定位系统的实现[J]. 光通信技术, 2017,41(03): 12-15.

[7]   陈爽, 金嘉诚, 张月霞. 基于可见光的自适应混合蛙跳定位算法[J]. 半导体光电, 2018,39(06):858-862.

[8]   刘冲, 张月霞. 融合神经网络和指纹的可见光定位算法研究[J]. 半导体光电, 2019,40(06):891-895.

[9]   谭家杰, 邹常青. 室内多环LED的信道特性分析[J]. 系统仿真学报, 2013,25(12):2906-2911.

[10]   .Gfeller F R, Bapst U. Wireless in-house data com- munication via diffuse infrared radiation[J]. Proceedings of the IEEE, 1979,67; 67(11; 11):1474-1486.

[11]   张志新, 徐洪振, 谢凤军, 等. 高校新型照明灯具节能技术应用研究[J]. 昆明理工大学学报(自然科学版), 2017,42(05):65-73.

[12]   江运力. 基于RSSI及图像传感器室内可见光定位系统研究[D]. 南京邮电大学, 2014.

[13]   陆霞. WiFi定位技术——基于质心定位的三边定位算法的研究[J]. 电脑知识与技术, 2013,9(25):5765-5767.

[14]   张秀楠, 邵建华, 柯炜, 等. 反射与噪声对室内可见光定位系统精度影响及其克拉美罗界[J]. 南京师大学报(自然科学版), 2017,40(03):102-109.

[15]   杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008(04): 388-396.

[16]   胡海婧. 考虑误差抑制的室内三维定位算法研究[D]. 哈尔滨工程大学, 2017.



评论


相关推荐

技术专区

关闭