新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 一种CAN总线光纤传输接口设计

一种CAN总线光纤传输接口设计

作者:时间:2009-08-26来源:网络收藏

引言

本文引用地址:http://www.eepw.com.cn/article/188715.htm

  作为一种成熟的现场技术,(ControllerAreaNetwork)在汽车、电力、机械、化工等工业控制领域得到了极为广泛的应用。协议标准中规定了支持的两种传输介质――双绞线和光纤。目前,绝大多数CAN总线系统采用的都是双绞线传输。光纤一般应用于大容量、高速率的传输中,对于CAN总线这种传输速率较低、数据量较小的现场总线通信,的优势得不到完全发挥,因此的应用还不多。国内外多家研究机构也都进行了CAN总线的研究,但主要是基于分立光纤收发元件的方法。本文介绍了一种使用光纤收发一体模块,结合编解码算法实现CAN总线光纤传输接口的方案;根据CAN总线的特点和实验数据,分析了CAN总线在光纤介质下传输性能的改善。

1CAN总线的双绞线及光纤传输

  1.1CAN总线双绞线传输

  CAN总线典型的网络拓扑是总线结构。1993年颁布的同际标准ISOll898对基于双绞线的CAN总线传输介质特性做出了建议:总线可具有两种逻辑状态,即隐性(逻辑l)或显性(逻辑0)。图1为基于CAN总线控制器SJA1000和总线驱动器PCA82C250的CAN双绞线传输网络结构图。

  CAN总线双绞线传输接口的特点是技术上容易实现,造价低廉;理论上节点数无限制,对环境电磁辐射有一定抑制能力。但随着频率的增长,双绞线线对的衰减迅速增大;双绞线还有所谓近端串扰,即在发送线对和接收线对之间仔在电磁耦合干扰。另外,双绞线的传输速率受距离限制比较大。这些缺陷使得CAN总线不宜在强干扰、高速率、远距离的场合下使用双绞线作为传输介质。

  1.2CAN总线光纤传输

  CAN协议支持光纤作为传输介质,但是由于CAN总线网络一般采用总线型结构,并且其总线仲裁采取的是具有优先级的非破坏性CSMA(载波侦听多路访问),而光纤信号的传输则是单向的,因此最简单实用的方法是在某些总线支路上采用光纤介质,整个CAN网络为双绞线和光纤两种传输介质混合使用的方式。结构如图2所示。

  作为传输介质,光纤在抗干扰性、传输容量、速率等方面具有许多比双绞线优良的特性。因此,在某些环境恶劣、地理分布范围较广、速率要求较高的CAN总线系统中,可以在相应的支路上使用光纤传输,从而保证整个CAN网络的性能。

2光纤传输接口实现方案

  2.1光纤收发模块的选用

  实现光纤传输的一个重要环节就是完成总线信号的光电转换,可以使用专用的光纤收发器件。目前,光纤收发器有两种类型:一种是基于分立元件的,即光接收和光发送模块是独立的。这种光收发模块相对比较简单,光发射部分主要由光源和偏置控制电路组成;光接收部分主要由光探测器、整形放大电路组成,一般采用塑料或多模光纤进行传输。另一种是光纤收发一体模块,它在光源、光探测、光器件封装、驱动集成电路、放大集成电路技术进步的基础上,将接收和发送集成到一起、符合电信传输标准的光电子系统;在光发射部分使用r性能更好的光源,并在接收部分加入了时钟及再生判决电路等,一般采用单模光纤进行传输。因此,光纤收发一体模块在信号转换的速率和稳定性上都比分立的光纤收发器件有很大的提高,而且与外围器件接口方便,单模光纤的色散、传输光功率消耗也比多模光纤小。

  本设计中选用一款TTL光纤收发一体模块,标准工业用l×9引脚,单+5V电源供电,光纤传输模式为单模,标准ST-ST光纤接口。该模块驱动接口如图3所示。
  

  2.2设计方案

  由于光纤收发一体模块中含有时钟提取电路,要求所转换的信号流要含有丰富的时钟信息,以便时钟提取电路准确地捕获信号的频率,因此信号流中不宜包含较长的连1或连0。而CAN总线在空闲以及发送某些类型帧时会出现比较长的连1或连0,尤其在通信波特率比较低的情况下,连续相同电平的时间就会越长,这将会导致接收器捕获不到信号流的准确波特率,从而导致光电转换后的信号的位时间不准确甚至错误。因此,就要求对待转换的CAN信号流进行预先处理。最常用的方法就是进行编码,编码后的信号流中包含丰富的时钟信息,不会出现较长的连1或连0,经过光纤传输后再进行解码还原。也就是说,在CAN控制器、驱动器与光电转换模块之间增加一个编解码器。

  据此提出一种基于CAN总线控制器SJA1000和光纤收发一体模块的CAN总线光纤传输接口方案,其结构如图4所示。

  接口分为发送端和接收端。发送端由CAN总线控制器SJA1000、信号编解码器和光纤收发一体模块组成;接收端由CAN总线驱动器PCA82C250、信号编解码器和光纤收发一体模块组成。CAN节点向总线发送数据时,发送端总线控制器SJA1000的发送信号TX经编码器进行编码之后,送至光纤收发一体模块进行信号的电一光转换,然后通过光纤传输到达接收端RX;接收端光纤收发一体模块先对收到的光信号进行光一电转换,再由解码器将编码信号还原,最后通过总线驱动器PCA82C250与总线连接,完成数据发送过程。数据接收过程同理。

3光电转换编码、解码器设计

  3.1CAN总线仲裁机制对编解码方的要求

  CAN总线的非破坏性总线仲裁机制的原理为:当总线空闲时,任何单元均可发送报文;若同时有2个或更多的节点开始发送报文,则会出现总线冲突。对于总线访问冲突,可借助于标识符ID进行逐位仲裁加以解决。仲裁期间,每个发送器将发送位电平同总线上检测到的电平进行比较:若相等,则节点继续发送;若不相等,则表明节点失去仲裁,停止报文发送。只有总线访问优先权最高的节点继续报文发送,其他优先权较低的节点失去仲裁,主动停止报文发送,只有当总线空闲时才能继续启动报文发送。因此,CAN节点每发送一位数据都要监听总线上的数据是否与所发送的一致。在不考虑信号在光纤中传输时的衰减及CAN节点自身限制的前提下,为了保证CAN总线通信的正常进行,在CAN总线的通信过程中必须保证信号延迟不能超过CAN总线的允许值,而这主要是由CAN总线物理层的位定时和同步功能决定的。CAN总线的位时间被定义为一位的持续时间。一个位时间可划分为4个不重叠的时间段,即同步段(SYNC_SEG)、传播段(PROP_SEG)、相位缓冲段1(PHASE_SEG1)和相位缓冲段2(PHASE_SEG2)。其中,同步段用于同步总线上不同的节点,这一段内要有一个跳变沿;传播段用于补偿网络内的物理延迟时间(包括总线上的信号传播时间和节点的内部延迟时间);相位缓冲段1和相位缓冲段2用于补偿边沿阶段的误差。由于CAN总线中各个节点的时钟可能不一致,因此需要进行重新同步。重新同步的结果,使相位缓冲段1增长,或使相位缓冲段2缩短,内部的位时间从同步段重新开始。采样点位于相位缓冲段1的结束,在采样点时刻,CAN节点读总线电平。通过编程采样点的位置可以优化总线定时。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭