新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > IGBT强驱动电路的设计

IGBT强驱动电路的设计

作者:时间:2010-12-10来源:网络收藏

摘要:根据脉冲渗碳要求,设计一种具有高可靠性、信号传输无延迟、能力强等特点的IGBT强电路,详细分析了工作原理,并对电路测试中出现的电流尖峰进行了抑制。在此基础上得出几个主要影响电路的因素。实际用于大功率IGBT桥电路驱动,工作稳定可靠。结果表明,所设计的电路结构简单,驱动能力强,可靠性高,且对用变压器驱动大功率全桥电路有通用性。
关键词:变压器隔离;驱动电路;IGBT桥;尖峰抑制

在脉冲中,驱动电路的好坏直接关系到逆变器能否正常工作。好的驱动电路首先要保证开关管安全,其次还要使开关管具有较小的损耗。这两者之间又是矛盾的。因为由功率开关元件引起的损耗主要是开关损耗(开通损耗和关断损耗)。开关损耗与驱动脉冲信号的上升沿陡度和下降沿陡度有很大关系。下降沿和上升沿越陡,相应的开关损耗就越小,即电压和电流重迭的时间越短。但是较陡的上升沿和下降沿又会产生过大冲击电流和电压尖峰,威胁开关管的安全工作。因此要实现安全且高效率的工作,就要抑制或吸收这些电流和电压尖峰。这里给出了一种变压器驱动的大功率IGBT模块电路,它既具有较强的驱动能力,又能很好地吸收电压和电流尖峰。

1 驱动电路的分析及此种驱动电路存在问题
在中频脉冲渗碳电源中,能快速进行过流保护是至关重要的,而驱动脉冲无延迟地传输,对实时过流保护起至关重要作用;同时为了减少开关损耗,还要求很陡的驱动脉冲上升沿和下降沿;一些特殊场合要求紧凑而简洁、不附加驱动电源等。综合考虑以上要求,采用变压器隔离全桥驱动电路,其电路如图1所示。
a.JPG

图1中两个桥臂各选用一个N-MOSFET和一个P-MOSFET。两路PWM控制信号1或2为高电平时,即1为高电平,2为低电平,Q1和Q4关断,Q2和Q3导通,Q5开通。此时,Q2,Q3和T1的原边绕组就形成通路,脉冲电压加在T1的原边,相应的次边会得到驱动脉冲信号。1,2都为低电平时,Q1,Q2会同时导通,T1原边被短路,则次边无脉冲输出。MOSFET具有开通电阻小,响应快,能提供很大的瞬时开启IGBT所需的电流,可以保证驱动脉冲有较陡的上升沿和下降沿。需要说明的是,此渗碳脉冲电源的输出脉冲控制芯片采用UC3825,属于峰值电流控制型芯片,自身具有防偏磁的能力,无需加隔直电容来防止偏磁;相反,当加隔直电容时,出现两路PWM控制信号不能同时关闭的问题,在去掉此隔直电容后,问题消失。因此,在使用隔直电容防偏磁时,要注意所用芯片的控制模式。


上一页 1 2 3 4 下一页

关键词: 驱动 电源

评论


相关推荐

技术专区

关闭