新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 一种大动态范围的实时数控AGC电路的设计

一种大动态范围的实时数控AGC电路的设计

作者:时间:2011-03-28来源:网络收藏

摘要:介绍了一种大原理、基本结构及工作过程,给出了一种应用于数字中频接收机(DIFR)中大的具体实现方法,该方法可以利用数字的优点和特殊的电路结构实现大自动增益放大/衰减。
关键字:实时数字电路;自动增益控制;大动态范围;数字增益补偿

0 引言
在频谱分析仪、中频接收机等诸多仪器中,动态范围是衡量仪器性能的重要指标之一。为了扩大仪器的动态范围,在频谱仪、接收机等仪器中经常采用自动增益控制电路(电路)。AGC电路是一种在输入信号幅度变化很大的情况下,其输出信号幅度可保持恒定或仅在较小范围内变化的自动控制电路。
与模拟AGC相比,数控AGC由于反馈部分的主要功能由数字部分实现,故其AGC控制可以更加容易地得到实现。利用数字信号处理精度高的特点,可以精确地实现数字增益补偿,使系统具有快速收敛和精确地稳态响应等优点。
AGC电路分为非实时和实时两种。前一种电路采用后反馈技术来实现,因此,在有实时性要求的场合不能使用;而后一种AGC电路则采用前馈技术实现,能够实现对信号的实时调理,因而克服了非实时性电路的缺点。在数字化中频频谱分析仪和数字中频接收机等测量仪器中,由于ADC器件存在量化噪声、孔径抖动、差分非线性失真、热噪声等误差,故会造成ADC输入动态范围及有效输出位数的下降,从而限制了仪器的输入动态范围,难以满足要求。对于一个14位ADC器件来说,当参考电压为1V时,在理想情况下,其所能转换的信号电平功率为-65 dBm~13dBm,动态范围为78 dB。而在噪声、量化误差等因素的影响下,该范围还会被进一步压缩,从而降低仪器的性能指标。为了保证仪器有更宽的动态范围和更高的幅度精度,本采用实时自动量程控制技术,该技术可使ADC转换器工作在最佳状态下,以减少量化误差的影响,提高信噪比,从而得到较大的动态范围。

1 实时数控AGC原理
实时数控AGC电路通常采用前馈式电路结构,以在信号到达ADC器件前完成对其调理。这种电路一般由预选滤波器、放大一抗混叠滤波电路、数控增益放大/衰减电路、模数转换电路、信号幅度提取电路、逻辑规则产生模块和数字增益补偿模块组成,其电路结构如图1所示。其中逻辑规则产生模块和数字增益补偿模块为数字信号处理部分,可在FPGA器件内部实现。

本文引用地址:http://www.eepw.com.cn/article/179307.htm

a.JPG


前端模拟混频后得到的中频信号首先经过一组单极点滤波器(包含LC滤波器、晶体滤波器)来滤除带外信号,然后通过选通再输出到信号幅度提取电路和放大-抗混叠电路。抗混叠滤波器能够更有效地滤除带外信号,避免采样频谱混叠。该电路一般具有多个极点,所以有显著的群时延特性,对于一个快速上升的中频模拟信号,经过抗混叠滤波器后,通常会产生时延,这个时间可以换算为多个采样时间间隔。而延迟可使信号在送入ADC之前有充裕的时间被数控增益芯片放大/衰减,以适应ADC器件的工作范围。信号幅度提取电路先提取输入信号的幅值,然后再经过量化后,被转换为档位信息,再通过逻辑规则产生模块根据档位信息配置数控增益芯片进行放大/衰减。当输入信号幅度较大时,逻辑规则产生模块应立即减小增益,以防止ADC器件过载;而当输入信号幅度长时间保持较小时,逻辑规则产生模块才会增加增益,这样可减小输入信号有效噪声,提高ADC的输出有效位数(ENOB)。同时,采样之后的数字增益补偿模块则根据档位信息提供的补偿值相应地调节采样数据,以实时补偿前端模拟电路的增益,从而准确恢复出输入的模拟中频信号幅度。

DIY机械键盘相关社区:机械键盘DIY



上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭