新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > LTC4350自主均流法研究

LTC4350自主均流法研究

作者:时间:2011-08-22来源:网络收藏

摘要:多模块电源系统并联工作时,为了保证模块间电流应力和热应力的均匀分配,防止一个或多个电源模块运行在电流极限值,而采用并联均流控制技术,可以很好地满足需要。文中分析了均流法的工作原理和性能特点,采用制作了两块实验电源模块,并让其并联工作,做均流和热插拔实验,达到了满意的效果。

本文引用地址:http://www.eepw.com.cn/article/178702.htm

  引 言

  并联的开关电源在模块间通常需要采用均流措施。它是实现大功率电源系统的关键,其目的在于保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在自身的电流极限状态。

  目前实现均流的方法有多种,而均流以其均流精度高,动态响应好,容易实现冗余技术等特点,而得到了广泛的应用。均流法自动设定主从电源模块,均流电路自动让输出电流最大的电源模块成为主模块,其余的电源模块则成为从模块。

  1 均流电路原理

  如图1所示,感应电阻Rsense两端压降的高低,代表了开关电源LTC1629输出电流的大小,Rsense两端电压通过LTC4350内部的Isense功能块后转化为测量电流输出,并在增益电阻Rgain两端形成比较电压。此比较电压接在内部均流误差放大器E/A2功能块的反向输入端,并与接在E/A2正向输入端的均流母线电压相比较,如若不相等,误差电压就会在内部Iout功能块变成电流IADJ输出,IADJ就会在Rout两端形成压降,从而影响LTC1629的sense输入端电压,这样,开关电源稳压器LTC1629就自动调整输出电压,直到整个电源系统中所有LTC4350的GAIN引脚电压等于均流母线SB引脚的电压时,负载电流被均匀分配了,也就达到了均流的目的。

  

图1 LTC4350自主均流原理示意图

  图1 LTC4350自主均流原理示意图

  FB引脚外接反馈分压电阻器,并与LTC4350的内部基准电压比较,误差电压经过内部误差放大器E/A1放大之后,驱动均流母线SB,如果FB引脚电压小于或等于基准电压,二极管D1正向导通,E/A1输出驱动SB,若FB引脚电压高于基准电压,D1截止,E/A1则与SB断开。具有最高基准电压的LTC4350将驱动均流母线SB以及内部与其相连的20KΩ负载电阻(每个20KΩ负载代表着一个LTC4350),使均流母线达到适当的电流值。所有其他的LTC4350的COMP1引脚为低电位,断开与均流母线的连接。

  2 LTC4350软硬故障及热插拔保护

  电源输出短接到地或输出电压异常高一般称之为“硬故障”,这类故障需要立即将损坏的电源模块与负载断开。电源开路故障和负载电流分配故障一般称之为“软故障”,此时电源输出电压虽然正常,但多个电源模块间电流分配不均。为此,需要在开关电源LTC1629和负载之间加上两个功率MOSFET(M1 和M2 串联,如图1所示),在模块出现“硬故障”和“软故障”时,隔离故障模块。当电源LTC1629输出短路,Isense功能块检测到Rsense上的大于30mV的反向电压并且超过5μs时,外部功率MOSFET栅极电压马上降低而使M2 开路,断开与负载的连接,过压保护通过0V引脚外接的电阻分压网络监视电源输出电压,一旦0V引脚电压超过设定的1.22V阈值,则外部功率MOSFET的栅极电压被拉低而使M1开路,断开与负载的连接。

  当电源首先作用到UCC引脚时,功率MOSFET栅极电压被拉低,一旦UCC升高并大于设定的摘要:多模块电源系统并联工作时,为了保证模块间电流应力和热应力的均匀分配,防止一个或多个电源模块运行在电流极限值,而采用并联均流控制技术,可以很好地满足需要。文中分析了LTC4350自主均流法的工作原理和性能特点,采用LTC4350制作了两块实验电源模块,并让其并联工作,做均流和热插拔实验,达到了满意的效果。

  0 引 言

  由于大功率电源负载需求的增加以及分布式电源系统的发展,开关电源的并联应用技术日益重要。但是并联运行的各个开关电源模块特性并不一致,外特性好(电压调整率小)的模块可承担更多的电流,甚至过载,从而使某些外特性较差的模块运行于轻载状态,甚至基本上是空载运行。其结果必然加大了分担电流多的模块的热应力,从而降低了可靠性。但是并联的开关电源在模块间通常需要采用均流措施。它是实现大功率电源系统的关键,其目的在于保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在自身的电流极限状态。

  目前实现均流的方法有多种,而自主均流以其均流精度高,动态响应好,容易实现冗余技术等特点,而得到了广泛的应用。自主均流法自动设定主从电源模块,均流电路自动让输出电流最大的电源模块成为主模块,其余的电源模块则成为从模块。

  1 LTC4350均流电路原理

  如图1所示,感应电阻Rsense两端压降的高低,代表了开关电源LTC1629输出电流的大小,Rsense两端电压通过LTC4350内部的Isense功能块后转化为测量电流输出,并在增益电阻Rgain两端形成比较电压。此比较电压接在内部均流误差放大器E/A2功能块的反向输入端,并与接在E/A2正向输入端的均流母线电压相比较,如若不相等,误差电压就会在内部Iout功能块变成电流IADJ输出,IADJ就会在Rout两端形成压降,从而影响LTC1629的sense输入端电压,这样,开关电源稳压器LTC1629就自动调整输出电压,直到整个电源系统中所有LTC4350的GAIN引脚电压等于均流母线SB引脚的电压时,负载电流被均匀分配了,也就达到了均流的目的。

  

图1 LTC4350自主均流原理示意图

  图1 LTC4350自主均流原理示意图

  FB引脚外接反馈分压电阻器,并与LTC4350的内部基准电压比较,误差电压经过内部误差放大器E/A1放大之后,驱动均流母线SB,如果FB引脚电压小于或等于基准电压,二极管D1正向导通,E/A1输出驱动SB,若FB引脚电压高于基准电压,D1截止,E/A1则与SB断开。具有最高基准电压的LTC4350将驱动均流母线SB以及内部与其相连的20KΩ负载电阻(每个20KΩ负载代表着一个LTC4350),使均流母线达到适当的电流值。所有其他的LTC4350的COMP1引脚为低电位,断开与均流母线的连接。

  2 LTC4350软硬故障及热插拔保护

  电源输出短接到地或输出电压异常高一般称之为“硬故障”,这类故障需要立即将损坏的电源模块与负载断开。电源开路故障和负载电流分配故障一般称之为“软故障”,此时电源输出电压虽然正常,但多个电源模块间电流分配不均。为此,需要在开关电源LTC1629和负载之间加上两个功率MOSFET(M1 和M2 串联,如图1所示),在模块出现“硬故障”和“软故障”时,隔离故障模块。当电源LTC1629输出短路,Isense功能块检测到Rsense上的大于30mV的反向电压并且超过5μs时,外部功率MOSFET栅极电压马上降低而使M2 开路,断开与负载的连接,过压保护通过0V引脚外接的电阻分压网络监视电源输出电压,一旦0V引脚电压超过设定的1.22V阈值,则外部功率MOSFET的栅极电压被拉低而使M1开路,断开与负载的连接。

  当电源首先作用到UCC引脚时,功率MOSFET栅极电压被拉低,一旦UCC升高并大于设定的欠压锁定阈值1.244V,LTC4350的UV引脚发挥作用。如果UV引脚电压大于1.244V,外接功率MOSFET栅极开始由10μA的电流充电,GATE 引脚电压开始以斜率10μA/CG缓慢上升(如图2所示),这个缓慢充电过程允许电源输出在不受干扰的情况下平稳接入负载。而当电源断开时,UV 引脚电压将低于1.22V,LTC4350迅速将外接功率MOSFET栅极放电,使负载与电源之间断开,这样就实现了LTC4350本身的热插拔功能。

  

图2 接通电源时GATE引脚电压

  图2 接通电源时GATE引脚电压

  欠压锁定阈值1.244V,LTC4350的UV引脚发挥作用。如果UV引脚电压大于1.244V,外接功率MOSFET栅极开始由10μA的电流充电,GATE 引脚电压开始以斜率10μA/CG缓慢上升(如图2所示),这个缓慢充电过程允许电源输出在不受干扰的情况下平稳接入负载。而当电源断开时,UV 引脚电压将低于1.22V,LTC4350迅速将外接功率MOSFET栅极放电,使负载与电源之间断开,这样就实现了LTC4350本身的热插拔功能。

  

图2 接通电源时GATE引脚电压

  图2 接通电源时GATE引脚电压


上一页 1 2 下一页

关键词: 研究 自主 LTC4350

评论


相关推荐

技术专区

关闭