新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 电容型高功率脉冲电源控制电路基本功能分析

电容型高功率脉冲电源控制电路基本功能分析

作者:时间:2012-05-30来源:网络收藏

摘要:论述了型高。指出设计选用固态继电器主要原因是其具有优良的抗震动性能。采用经验法设计了,并通过试用改进了控制电路。设计的控制电路满足了电热化学炮与高实用化一体集成需要。

本文引用地址:http://www.eepw.com.cn/article/177114.htm

1 引 言

(PPS)是为脉冲功率装置负载提供电磁能量的装置。由多个脉冲器组为储能单元并联组成的PPS,具有储能简单,造价低、波形灵活可调,所需充电功率小,抗干扰能力强,方便运输等突出优点,在电热化学炮(ETcG)研究领域得到了广泛应用。

实验研究用的PPS通常由充电子系统、脉冲成形子系统、汇流排及大功率传输线、控制与测试子系统、屏蔽与接地子系统等几部分组成。为了避开ETCG发射时剧烈的机械震动和强烈的电磁干扰,实验研究时PPS的控制子系统的电路通常采用远方方式设计和使用。随着ETCG朝实用化方向发展,需要ETCG与PPS诸系统集成一体,从而要求控制电路必须具有优良的抗机械震动性能,并能在强电磁干扰环境中使用。

2 控制电路

PPS工作时,由控制电路对系统各阶段状态进行监测,并根据监测情况发指令进行系统状态跳转。

控制电路主要是实现PPS的充、放电电控制。

通常,充电子系统内部配有过电流、过电压和过热等故障保护或异常告警装置。但这些装置的保护范围一般仅限于充电子系统内部,PPS放电时浪涌电压等外部因素仍可能造成充电设备损坏。因此,在储能单元和充电子系统间还需配置一些隔离和保护电路。图1给出了用于ETCG研究的PPS所配置的充电隔离及保护电路。图1中,充电隔离开关(Kc)和地绝缘隔离开关(Kg)在充电结束后打开,用以防止PPS放电时由负载等因素产生的浪涌高电压通过充电子系统对地放电,可以避免因此所造成的充电设备绝缘损坏;充电输出终端并联了一小容量器(Cp)及其安全释能电路(开关Kp、电阻Rp),目的在于防止空载误充电,以避免在此情况下充电电路末端电压急剧升高损坏充电设备。

图1 充电隔离保护电路

图1 充电隔离保护电路

脉冲电容器储能后,由控制电路发送命令进行触发放电(ETcG发射)。ETCG发射精度和一致性与PPS储能量密切相关,电容器储能大小与其充电电压的量值平方成正比,因此控制电路必须能精确控制充电电压量值,这可以通过与被充电容器组并联分压器一电压继电器组来实现,见图2。

图2 充电电压测控与安全释能电路

图2 充电电压测控与安全释能电路

工作中有可能因安全因素或异常情况需要取消ETCG发射,这种情况下电容器可能已经储存了大量电能。此外,ETCG发射后电容器一般仍存储着一些剩余电能。因此,如图2所示,PPS安装了储能安全释放电路,Kd是安全释能开关,其状态受控于控制电路,Rd为安全释能电阻。

因此,控制电路应具备如下功能:

(1)高压继电开关状态控制。控制电路必须能使各高压继电开关通断状态正确对应于PPS的不同工作阶段,见表1;(2)充电启、停控制。充电设备将根据控制电路命令启动或停止充电;(3)放电控制。在正常情况下,电容器组储能结束后,PPS将根据控制电路命令启动触发放电(ETCG发射);(4)急停控制。工作中,若系统某个部分(器件)发生异常或出现安全隐患,控制电路应具有使充电设备紧急停车功能,并能使电容器安全释能。

表1 被控继电开关状态

表1 被控继电开关状态

3 控制器件选用

ETcG发射特点不仅是高电压、强电流,而且伴随着强烈的机械震动。因此,选用控制器件时必须兼顾器件的电磁兼容(EMC)性能和抗震动性能。

实验研究用PPS的控制电路一般为远方模式,可以采用单片机等微控制器(MCU)或者电磁式继电器(EMR)进行电路设计。但系统一体集成时,ETCG发射所引起的强震动、强电磁干扰将致使MCU不能正常工作甚至损坏,同样,由于具有金属线圈和机械触点,EMR也难免发生误动作或损坏。

调查发现,固态继电器(SSR)可在强震动工况下使用。作为一种由固态电子元件组成的新型无触点开关器件,SSR近年来在民用工控领域得到了广泛应用。它是依靠半导体器件和电子元件的电、光特性来完成隔离和继电切换功能的。由于没有电磁线圈,且不含运动零部件,因而它不怕剧烈的机械震动。根据文献[4]所进行的电磁抗干扰能力测试与给出的EMC抗干扰标准,SSR也具有良好的EMC性能,在类似于ETCG工况的电磁环境中使用完全合适。因此,电路设计时控制器件选用了SSR.

DIY机械键盘相关社区:机械键盘DIY



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭