新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 基于ZigBee的光伏照明控制系统设计

基于ZigBee的光伏照明控制系统设计

作者:时间:2010-09-10来源:网络收藏

摘要:设计一种基于网络的光伏照明控制系统,给出系统的网络拓扑结构和节点的硬件设计方案,以及软件结构设计。该系统采用CC2430实现数据传输,采用CC2591功率放大器提高发射功率,传输距离远,可靠性高,有效地克服了传统照明控制方式落后和布线复杂等缺点。
关键词:光伏照明;;CC2430

本文引用地址:http://www.eepw.com.cn/article/157120.htm

引言
光伏发电作为利用太阳能的主要方式,已经得到广泛的应用。光伏照明是一种独立的光伏发电系统,主要用于城市和建筑物照明系统的建设和改造。目前,照明控制系统中多采用有线网络方式,维护起来比较复杂,如何简化施工、降低成本并实现远距离控制是一个值得探讨的问题。本文介绍了一种利用传感器网络技术实现光伏照明系统远程监控的方案,并给出了详细的软硬件设计。

1 光伏照明控制系统组成及工作原理
光伏照明控制系统由光伏发电系统、无线通信系统和监控计算机3个部分组成。
光伏发电系统由建筑顶部的太阳能电池板、铅酸蓄电池组和光伏充电机构成。太阳能电池是照明系统的输入电源,为照明系统提供照明和控制所需电能。白天,在光照充足的条件下将所接收的光能转换为电能,经光伏充电机对蓄电池组充电;夜晚,蓄电池组将储存的电能经光伏充电机切换输出到路灯负载。当光伏充电机对蓄电池组进行充电时,为延长蓄电池寿命,必须避免蓄电池处于过充电或者过放电的状态。因此,需要对光伏充电机充电电流、电压和发电量等数据进行实时监控和保存,还要求能对路灯进行独立的开关控制。
由于本系统中太阳能电池板位于图书馆顶部,监控计算机处于相隔200 m的另外一个建筑物中,中间相隔了水池,如果采用有线通信方式则需要重新进行布线,施工复杂且成本较高,因此,采用无线通信网络。无线通信方式不仅简单灵活,无需考虑布线问题,还可以通过和其他总线通信方式的结合,实现远距离数据传输和路灯控制。采用ZigBee无线传感器网络技术可实现对充电机状态数据的传输;同时,监控计算机可以通过无线网络控制路灯的开关状态,实现了对充电机状态的实时监控和灯光控制效果。控制范围在300 m以内,如果增加路由器,还可扩展到更远的范围。
ZigBee是一种短距离、低速率、低功耗、低成本和低复杂度的无线传输技术,非常适合于低功耗和低数据量的短距离无线传输。ZigBee的低功耗特点限制了节点之间的通信距离(一般为70 m)。本系统中,节点之间的距离超过了其正常通信距离。有2种解决办法:一种是通过增
加路由器节点来扩大覆盖范围,缺点是增加硬件成本;另一种是利用PA(Power Amplification,功率放大)提高发射功率,该方法较为简单且成本较低。本设计中采用后者来扩大网络覆盖范围。
ZigBee设备可分为全功能设备(FFD)和精简功能设备(RFD)。FFD可以与RFD或者FFD通信,而RFD只能和FFD通信;FFD可作为网络协调器、路由器或终端设备,RFD只能作为终端设备。本系统中网络协调器和监控计算机通过RS485总线相连,负责建立、管理和维护网络,控制其他节点接收数据等功能。路由器通过RS485总线和光伏充电机相连,实现对其数据的采集和控制,终端节点接收监控计算机的命令控制路灯电源的开关。ZigBee网络拓扑结构支持星形(Star)、树形(Clustetree)和网状(Mesh)。为简化设计,无线网络采用树形网络拓扑,系统组成如图1所示。

12a.jpg


监控计算机负责光伏数据采集和系统管理,通过RS485总线和安装在户外的网络协调器进行通信。光伏充电机数据通过RS485总线传送到路由器节点,再由协调器转发到监控计算机。路由器还起到延长ZigBee网络传输距离的作用。监控计算机通过网络协调器发送命令给路由器,实现对充电机电源开关的切换控制。路灯供电线缆通电后,终端节点加入ZigBee网络。网络协调器对终端节点进行检查,并将节点状态传输给监控计算机。监控计算机通过网络协调器发送命令给各个终端节点,控制各个节点路灯电源开关导通或者断开,从而实现路灯的单独或者分段照明控制。当需要实现景观灯效果时,可通过监控软件设计向各个终端节点发送相应的控制命令。


上一页 1 2 3 下一页

关键词: ZigBee 无线

评论


相关推荐

技术专区

关闭