新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > AWGN下差分跳频系统的多用户能力分析

AWGN下差分跳频系统的多用户能力分析

作者:时间:2012-02-16来源:网络收藏

摘要 介绍了跳频技术的基本原理,跳频技术的特点和跳频的组网技术,对差分跳频的误码率及在高斯白噪声条件下的多进行了理论,同时做出了相应的计算机仿真。仿真结果表明,数越少相应信噪比条件下的误码率越小,说明干扰越小。
关键词 差分跳频;误码率;高斯白噪声

1 差分跳频
相关差分跳频(DFH)通信是近年出现的跳频通信方式。美国Sanders公司研制的相关跳频增强扩谱CHESS电台就采用这种差分跳频技术,实现了在短波波段5 000跳/秒的跳频速率和最高19.2 kbit·s-1的数传速率。
差分眺频的基本原理:当前时刻的工作频率fn由上一跳的工作频率fn-1和当前时刻的信息符号Dn决定,即
fn=G(fn-1,Dn)
其中,G(fn-1,Dn)是一个特定函数,文中称为G函数,它决定了差分跳频的数据/频率映射关系。由此可见,相邻跳变频率之间通过数据序列建立了一定的相关性,亦即相邻频率的相关性携带了待发送的数据信息,因此这种跳频方式也被称为相关差分跳频。

2 差分跳频技术的特点
差分跳频技术集跳频图案、信息调制与解调等功能于一体,构成与传统跳频技术完全不同的技术体制,它具有以下特点:
(1)差分跳频体制是一种相关跳频体制,差分跳频通过G函数变换,使相邻或多跳频率之间具有相关性,其相关性携带了待发送的数据信息,收端也是根据其相关性还原数据信息,所以也将这种跳频体制称为相关跳频。在常规跳频体制中,时间上相邻的频率与其传输的数据信息无关。
(2)差分跳频体制是一种异步跳频体制,差分跳频的收端无法预知每个时刻的发端频率,在工作带宽内进行宽带数字化接收,接收端不需要频率合成器,从这个意义上说,差分跳频是一种异步跳频。
(3)G函数具备数据的调制解调功能,差分跳频无需传统定频或跳频体制中的基带和中频调制,发端经G函数变换,实现数据与频率之间的“数/频”编码,收端先对接收到的直接携带信息的射频频率进行有效检测,再经过G函数的逆变换即可恢复出数据信息,实际这也是一种调制解调过程。相同的情况,这是差分跳频图案产生的机理决定的,普通跳频一般不具备这个特点。
(4)跳频图案没有实时时间参与运算在传统跳频图案产生过程中,除跳频时序控制以外,原始跳频密钥Pk和时间参数TOD参与跳频图案运算。而在差分跳频图案的产生过程中,数据流参与跳频图案的运算,相当于跳频密钥,与实时时间TOD无关。数据流对跳频通信的接收端是未知的。
由于差分跳频与传统跳频的原理有很大差别,造成其组网性能也有很大不同。例如,传统跳频电台组网时,相同频率造成频率碰撞,形成多址干扰,而频率不同时,不构成多址干扰;对于差分跳频电台,不同频率可能会造成接收方数据的误判,从而形成多址十扰;频率相同时,如果削弱有效频率的幅度,则形成多址干扰,如果加强频率的幅度,则不形成多址干扰,与两个频率之间的相位有关。
传统的同步组网是指,各跳频网在技术体制、跳频图案算法及跳频密钥相同以及同一张频率表的条件下,各跳频网每一跳的起跳时刻相同,并且任一时刻的各网瞬时频率正交。由于传统的同步组网是同频造成多址干扰,而差分跳频则是异频可能会形成多址干扰。因此差分跳频同步组网的概念应扩展为在同一张频率表的条件下,各跳频网每一跳的起跳时刻相同时,任一时刻各网瞬时频率不相互形成干扰。差分跳频图案是由随机数据信息控制G函数产生的,而每部电台和各跳频网的数据源是不同的,是相互独立的,相互之间不可能有某种约束关系,导致了即使各台及各网之间在时间上有约束关系,也难以实现各台各网之间频率的人工干预,这样一来,当接收方收到的频率为当前G函数映射出的除当前发送频率之外的m-1个频率中的某一个频点时,就会形成多址干扰。也就是说,要做到差分跳频各网当前跳变频率不落在其余网G函数映射的频率子集之内相当困难。需要通过研究G函数的算法,寻找适当的映射途径,使得各网跳变时刻相同,但任一时刻各网瞬时频率不相互形成多址干扰。

3 下差分跳频系统的多
图1为DFH多用户系统模型。每个发射机提供一种交织编码样式,这种编码的码型同数据比特流一起构成传输波形。在每个接收机处,解码器也使用与对应用户相同的码型。如果某接收机对多个发送信号感兴趣,它为合成信号中每个发送信号创建一种检测交织编码样式。其他的发送信号则被认为是干扰,而DFH解码算法能很好地抑制这些干扰。然而某些时候,在已经投入使用的DFH多用户系统中,用户数量会影响解码的性能,而且对干扰的消减程度也是适当的。

本文引用地址:http://www.eepw.com.cn/article/155285.htm

a.jpg


根据频率数、信噪比、产生一个DFH多用户系统的理论上的误码率γ,以及干扰的数量N-1,并使用多用户信干比SINR为γMU。
在DFH解码的每一阶段,干扰信号会造成模糊概率ρ=(2b-1)/M。换句话说,来自功率为S某一干扰信号的有效的干扰为ps=(2b-1)S/M。因此,如果存在N个功率相等的用户,每个用户都以与无干扰状态下的信噪比γ=S0/N相一致的信号电平来进行传送,这样就可以确定有效的信干比
γMU=γ/(1+γ(2b-1)(N-1)/M) (1)


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭