首页  资讯  商机   下载  拆解   高校  招聘   杂志  会展  EETV  百科   问答  电路图  工程师手册   Datasheet  100例   活动中心  E周刊阅读   样片申请
EEPW首页 >> 主题列表 >> pfc

基于onsemi NCP1618多模式PFC 500W设计方案

  •  近年来随著应用技术不断推陈出新,造就终端应用的功率需求越来越大,例如:5G网通电源供应器、ATX/Gaming电源供应器等等,功率消耗大于一程度时电源供应器就要有功率因数校正(Power Factor Correction, PFC)的功能,以欧盟EN61000-3-2规范要求,所有电子产品输入功率大于75W时,其电源供应都需要有功率因数校正的机能。另外,在规格要求也越来越严苛,以往可能只要求满载下效率与功率因数PF值等,目前会要求在某负载范围下效率都要达到一定的程度,且PF值也要达到一定的数
  • 关键字: onsemi  power  安森美  NCP1618  Multi-mode PFC  ATX power  Gaming power  Networking  电竞电源  网通电源  

氮化镓在采用图腾柱 PFC 的电源设计中达到高效率

  • 几乎所有现代工业系统都涉及交流/直流电源,这些系统从交流电网获得能量,并将经过妥善调节的直流电压输送到电气设备。随着全球功耗增加,交流/直流电源转换过程中的相关能量损耗,成为电源设计人员整体能源成本考虑的重要部份,特别是高耗电电信和服务器应用的设计人员。 氮化镓有助于提高能效并减少交流/直流电源的损耗,进而有助于降低终端应用的拥有成本。例如,透过最低 0.8% 的效率增益,采用氮化镓的图腾柱功率因子校正(PFC)有助于100 MW数据中心在10年内节省多达700万美元的能源成本。 选择正确的 PFC 级拓
  • 关键字: 氮化镓  图腾柱  PFC  电源设计  

离线 PFC-PWM 组合控制器

  • 本应用说明解决了电力公司广泛使用的变压器和其他电源效率质量低下的原因。接下来是建议的离线 PFC-PWM 组合控制器架构,该架构可以极大地帮助缓解功率转换器内电流线路中高谐波含量的困境。此外,还评估了该设计架构,以了解其对系统整体效率的影响。本应用说明解决了电力公司广泛使用的变压器和其他电源效率质量低下的原因。接下来是建议的离线 PFC-PWM 组合控制器架构,该架构可以极大地帮助缓解功率转换器内电流线路中高谐波含量的困境。此外,还评估了该设计架构,以了解其对系统整体效率的影响。   
  • 关键字: PFC  PWM  组合控制器  

GaN 如何在基于图腾柱 PFC 的电源设计中实现高效率

  • 几乎所有现代工业系统都会用到 AC/DC 电源,它从交流电网中获取电能,并将其转化为调节良好的直流电压传输到电气设备。随着全球范围内功耗的增加,AC/DC 电源转换过程中的相关能源损耗成为电源设计人员整体能源成本计算的重要一环,对于电信和服务器等“耗电大户”领域的设计人员来说更是如此。氮化镓 (GaN) 可提高能效,减少 AC/DC 电源损耗,进而有助于降低终端应用的拥有成本。例如,借助基于 GaN 的图腾柱功率因数校正 (PFC),即使效率增益仅为 0.8%,也能在 10 年间帮助一个 100MW 数据
  • 关键字: ti  GaN  图腾柱  PFC  电源  

干货 | 如何更好的理解PFC(功率因数校正)

  • 01 什么是功率因数补偿?功率因数补偿:在上世纪五十年代,已经针对具有感性负载的交流用电器具的电压和电流不同相(图1)从而引起的供电效率低下提出了改进方法(由于感性负载的电流滞后所加电压,由于电压和电流的相位不同使供电线路的负担加重导致供电线路效率下降,这就要求在感性用电器具上并联一个电容器用以调整其该用电器具的电压、电流相位特性,例如:当时要求所使用的40W日光灯必须并联一个4.75μF的电容器)。用电容器并连在感性负载,利用其电容上电流超前电压的特性用以补偿电感上电流滞后电压的特性来使总的特
  • 关键字: PFC  功率因数校正  

GaN如何在基于图腾柱PFC的电源设计中实现高效率

  • 几乎所有现代工业系统都会用到 AC/DC 电源,它从交流电网中获取电能,并将其转化为调节良好的直流电压传输到电气设备。随着全球范围内功耗的增加,AC/DC 电源转换过程中的相关能源损耗成为电源设计人员整体能源成本计算的重要一环,对于电信和服务器等“耗电大户”领域的设计人员来说更是如此。氮化镓 (GaN) 可提高能效,减少 AC/DC 电源损耗,进而有助于降低终端应用的拥有成本。例如,借助基于 GaN 的图腾柱功率因数校正 (PFC),即使效率增益仅为 0.8%,也能在 10 年间帮助一个 100MW 数据
  • 关键字: TI  GaN  PFC  

电源设计更快更好,高效能图腾柱PFC应用须知

  • 现今电源供应器市场为因应全球减碳活动,已经将效能目标设定为更高效率、减少损失、节省能源、降低成本、提高系统容量为主。安森美(onsemi)提出最新高效能Totem Pole(图腾柱) 结合全桥整流器之PFC IC NCP1680/1681设计方案,相较传统PFC之转换效率可以提升3%~4%,符合未来电源供应器之节省能源,降低成本,提高系统容量之诉求。加上NCP1680/1681快速的负载暂态补偿响应,以及高规格安规等级各式保护功能,特别是具有PFC-OK讯号供应后级电源时序控制,NCP1680/1681应
  • 关键字: 大大通  PFC  

三相PFC转换器如何大幅提高车载充电器的充电功率?

  • 随着汽车市场电气化时代的到来,对电池充电器的需求越来越大。通过简单的公式可以知道,功率越大,充电时间就越短。本文考虑的是三相电源,其所能提供的功率最高为单相电源的3 倍。这里提及的三相 PFC 板是基于碳化硅 MOSFET 的车载充电器系统第一级的示例,它会提高系统效率并减少 BOM 内容。开发 PFC 板的主要目的是方便访问不同设备,从而为测试阶段和测量提供便利;外形尺寸优化从来不是 EVB 的目标。  一 输出电压在这里,三相 PFC 提供的输出电压被固定为 700 V(精度5%)。得益于
  • 关键字: 安森美  PFC  车载充电器  

基于ST L4985A 的低 THD 350W CCM PFC 前置稳压器方案

  • 介绍本应用笔记介绍了基于新型 L4985 连续导通模式的演示板 EVL4985-350W (CCM) 功率因数控制器 (PFC),并介绍了其台架评估的主要结果。该板实现了350W,宽范围输入 PFC 预调节器,适用于从 150 W 到数 kW 的所有 SMPS,必须符合 IEC61000-3-2 和JEITA-MITI 标准。由于 L4985 上嵌入了专利控制,该设计的主要特点是输入电流失真极低(THD)在所有工作条件下,并且外部元件数量非常有限,如高压启动电路和X-cap 放电电路嵌入在 L4985 中
  • 关键字: ST  Power  PFC  CCM  l4985a  

PFC电路:死区时间理想值的考量

  • 由于该电路是进行同步整流工作的电路,所以我们通过仿真来探讨高边(HS)和低边(LS)SiC MOSFET SCT2450KE的死区时间理想值,即不直通的最短时间。死区时间可以通过仿真工具的PWM控制器参数TD1(HS)和TD2(LS)来分别设置。关键要点・桥式电路中的死区时间设置与损耗和安全性有关,因此需要充分确认。・死区时间的理想值是不直通的最短时间。・由于开关器件的开关速度会受温度和批次变化等因素影响而发生波动,因此在设计过程中,除了最短时间外,还应留有余量。在本文中,我们将探讨如何估算桥式电路中理想
  • 关键字: 罗姆  PFC  

使用NCP1623A设计紧凑高效的PFC级的IC控制电路设计

  • 之前我们介绍过快速设计由 NCP1623 驱动的 CrM/DCM PFC 级的关键步骤中的定义关键规格与功率级设计。本文将详细说明IC控制电路设计中的细节:FB引脚电路、VCTRL 引脚电路、CS/ZCD 引脚电路、CSZCD电阻器设计等内容。步骤 3:IC 控制电路设计如图 1 所示,反馈配置包括:●  一个电阻分压器,用于降低体电压,以向 FB 引脚提供反馈信号。出于安全考虑,分压器的上层电阻通常由两个或三个电阻构成。否则,RFB1 的任何意外短接都会将输出高电压施加到控制器上并将
  • 关键字: 安森美  NCP1623A  PFC  

使用NCP1623A设计紧凑高效的PFC级的关键步骤

  • 本文介绍了快速设计由 NCP1623 驱动的 CrM/DCM PFC 级的关键步骤中的定义关键规格与功率级设计,并以实际的 100W 通用电源应用为例进行说明,IC控制电路设计将在后续的推文中分享。●  最大输出功率:100 W●  Rms 线路电压范围:90 V - 264 V●  调节输出电压:●  低压为 250 V(115V 电源)●  高压为 390 V(230V 电源)NCP1623 具有多个选项,本文侧重于NCP1623A,它与其他版本的主要
  • 关键字: 安森美  NCP1623A  PFC  

PFC电路:栅极电阻的更改

  • 在实际的电路设计工作中,降噪是的一项重大课题,通常,可以通过提高开关器件的栅极电阻来抑制噪声,但其代价是效率降低(损耗增加),因此很好地权衡栅极电阻值的设置是非常重要的。在本文中,我们来探讨当将开关器件的损耗抑制在规定值以下时,最大栅极电阻RG的情况。另外,由于噪声需要实际装机评估,所以在这里省略噪声相关的探讨。关键要点・增加开关元件的栅极电阻会抑制噪声,但与之存在权衡关系的效率会降低,因此很好地权衡栅极电阻值的设置是非常重要的。・将开关器件的损耗抑制在规定值以下时,其最大栅极电阻RG可以通过仿真来确认。
  • 关键字: ROHM  PFC  

隔离电流检测放大器在PFC升压系统中的应用

  • PFC( Power Factor Correction)被称为“功率因数校正”,被定义为有效功率和总耗电量(视在功率)的比值。当使用于大中功率开关电源时,提高功率因数可以降低电网传输中的损耗从而提高电能的输送效率。因此提高功率因数有着重要的意义。本文将为大家介绍川土微电子CA-IS120X/130X系列产品在PFC中的应用,并针对实际应用提出使用方法和控制建议。01 功率因数的定义功率因数定义为交流电路有功功率P(W)对视在功率S(V*A)的比值。当交流电压和电流相位不同时,则功率因数小于1。用户电器设
  • 关键字: 川土微电子  放大器  PFC  

安森美半导体推出新一代Multi-Mode (DCM & CCM) PFC IC–NCP1618应用于 500W 之防疫医疗仪器电源方案

  • 一场世纪病毒带给人类天翻地覆的影响,全球对于救命的医疗仪器需求殷切,世平集团推出新一代PFC IC – NCP1618应用于 500W  之防疫医疗仪器电源,是采用安森美(ON Semi) 半导体新一代高效能NCP1618 Multi-Mode (DCM & CCM)  Power Factor Controller (多模操作之功率因数控制IC) . 此一IC 内建高压启动(HV Start-up)电路,智能转换连续电流模式(CCM)、临界电流模式(CrM) 及非连续电流模式
  • 关键字: 安森美  NCP1618  医疗  电源  PFC  DCM  CCM  
共332条 2/23 « 1 2 3 4 5 6 7 8 9 10 » ›|

pfc介绍

  一:PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率 [ 查看详细 ]

热门主题

PFC/PWM    PFC+PWM控制器    树莓派    linux   
关于我们 - 广告服务 - 企业会员服务 - 网站地图 - 联系我们 - 征稿 - 友情链接 - 手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
备案 京ICP备12027778号-2 北京市公安局备案:1101082052    京公网安备11010802012473