设计多相位升压转换器时,简单之处在于连接输入电源和输出电轨,以减小输入/输出滤波器的尺寸,并且降低其成本。难点则在于连接误差放大器的输出和相位控制器的反馈引脚,以确保实现平衡均流和正确的相位同步。这两种信号对噪声极其敏感,即使采用非常精细的布局,也会受到升压转换器应用中典型的尖峰电流和电压变化影响。一些升压控制器具备多相位功能,可以解决此问题,但很多都没有。对于没有多相位电路的控制器,LT8551 多相位升压转换器相位扩展器可以和主控制器的开关组件一同工作,并检测其状态,以此解决该问题。 LT8
关键字:
ADI 升压转换器
我们使用升压转换器,从低输入电压生成高输出电压,使用开关稳压器和升压拓扑可以轻松实现这种电压转换。但是,电压增益本身存在限制。电压增益是输出电压与输入电压的比值,如果从12 V输入电压生成24 V输出电压,电压增益为2。以一个工业应用为例,需要从24 V电源电压生成300 V输出电压,输出电流为160 mA。图1. 升压转换器电路。还可以使用占空比来表示电压增益:占空比和电压增益是升压转换器的主要参数,表示在每个周期中,开关S开启的时长。电压增益表示输出电压超出输入电压的比例(因数)。 为了生成
关键字:
ADI 升压转换器
在全球范围内从内燃机汽车 (ICE) 转向电动汽车 (EV) 的条件是相应的充电基础设施取得重大进展。虽然低功率 (<15 kW) 车载充电机可以在车辆闲置期间支持家庭充电,但长途旅行和服务行业需要更快的充电速度,以对标当前汽油加油站的加油速度。为了提高充电速度,需要同时改进电池技术和充电基础设施。本指南论述了 60 kW 双有源桥 (DAB) 转换器的设计、开发和测试,该转换器可同时满足电动汽车快速充电机的隔离和调节需求。此外,该设计所选择的拓扑结构使其能够并联,以实现高达 300 kW 的输出功
关键字:
ADI 电动汽车
ADI公司的集成RS-485隔离型收发器产品组合提供良好的灵活性和性能,能够满足颇具挑战性的系统设计要求,与光耦合器方法相比具有明显的优势。
关键字:
RS-485 隔离电源 ADI
然而,大型车辆(比如公共汽车)产生的排放量估计约占全球运输排放量的三分之一。一辆牵引拖车,每年会产生200多吨二氧化碳(CO2)排放。根据美国环境保护局的数据,这几乎是普通乘用车的40倍,据估计,普通乘用车每年产生4.6公吨二氧化碳。宇通是一家领先的大型商用车公司,已与ADI开展合作多年,以推进其运输领域脱碳的目标。历经30余年的发展,宇通作为全球最大的电动客车制造商,已将目光转向其他类型的商用车,包括采用了ADI无线电池管理系统(wBMS)技术的新型电动牵引拖车。⭐目标将商业运输脱碳、生产线效率及电动汽
关键字:
ADI
选择合适的原电池可能需要在多个相互冲突的要求之间进行权衡。您希望电池容量足够大,能够在较长时间内为设备持续供电,并且输出电压范围符合集成电路供电需求。通常,您会希望电池尺寸越小越好,以尽量缩小产品的整体尺寸。此外,还需要考虑成本、供货情况和保质期。作为工程师的职责,我们还必须考虑设计决策对环境的影响。我们为产品选择的电池最终可能会被丢进垃圾填埋场,一直堆放在那里很多年。为了帮助设计人员正确选型,我们将重点关注常用的碱性电池、锂金属电池、氧化银电池和锌空气电池的化学组成,并评估它们在一次性心电图(ECG)胸
关键字:
ADI 电池
本文专注探讨SmartMesh与Bluetooth Low Energy(BLE)网状网络是工业状态监测传感器最适合的无线标准,其中介绍BLE低功耗蓝牙、SmartMesh及Thread/ZigBee等无线标准,以及其在严苛工业射频环境中的适用性,并列举多项比较标准,包括功耗、可靠度、安全性及总体持有成本。SmartMesh时间同步机制造就出低功耗性能,而SmartMesh与BLE频道跳频机制则带来更高的可靠度。一项针对SmartMesh的案例研究,总结出可靠度高达99.999996%。Analog De
关键字:
智能型 无线工业传感器 ADI
组件电源(DPS)IC能够弹性加载电压、加载电流,为自动测试设备(ATE)提供动态测试能力。当负载电流在两个可编程电流限值之间时,DPS IC为电压源,并且在达到设定的电流限值时平稳转换为精密电流源/灌电流。图一为ADI新一代组件电源IC MAX32010的简化框图。开关FIMODE、FVMODE和FISLAVE MODE选择不同的工作模式,例如:加载电压(FV)、加载电流(FI)和FI Slave模式;开关HIZF和HIZM分别选择MV (电压测量)和MI (电流测量)模式。RANGE MUX与外部检流
关键字:
自动测试设备 组件电源 ADI
本文是系列文章中的第一篇,该系列文章将讨论常见的开关模式电源(SMPS)的设计问题及其纠正方案。本文旨在解决DC-DC开关稳压器的功率级设计中面临的复杂难题,重点分析电感问题。设计人员为了获得各种优势,例如减少输出纹波和尽量缩减解决方案尺寸,往往会选择超出推荐范围的电感值。然而,选择电感值过大或过小的元件都会导致意想不到的后果,可能会造成芯片严重损坏并降低效率。本文还将分析探讨:如果不采取适当的措施,确保负载电流不会超过电感的最大饱和额定值,会出现什么情况。
关键字:
开关模式电源 ADI
本文简要介绍了典型的数据采集系统及其核心元件。然后介绍 Analog Devices Inc 的数据采集 (DAQ) 模块,该模块集成了许多关键元件,可提供稳定的 18 位、2 兆次采样每秒 (MS/s) 的性能。最后介绍评估板,帮助设计者熟悉该数据采集模块及其使用。工业自动化和医疗保健系统的设计者正越来越多地采用先进的感测、探测以及图像和视频捕捉技术进行数字化和分析。然而,分析的好坏取决于输入数据,而数据采集又依赖于高性能、高动态范围、精确和稳定的信号调节和转换块。如使用分立式电路方
关键字:
ADI 分立元件 数据采集系统
摘要ADI公司A²B®总线的全新增强功能为数据和音频传输与分发带来新的发展。智能楼宇、大厅、房间或智能家居均可从新型收发器的众多集成特性中获益。新的A2B增强功能包括总线长度更长,可达300米,并且总线功率更高,可达50 W。本文重点介绍了这些增强功能如何帮助打造更复杂的系统。文中展示了一些应用示例,其中A2B总线可以帮助简化布线架构,而涉及的硬件和软件工作量非常少。引言A2B是一种双向高带宽数字音频总线,能够在很长的距离上(节点间的距离长达30 m,整个总线长度为300 m),使用一条2线式非屏蔽双绞线
关键字:
A2B 音频传输 ADI
由全国电力系统管理及其信息交换标准化技术委员会主办,国网江苏省电力有限公司电力科学研究院等协办,赛尔传媒承办的第十四届配电技术应用大会于7月25日在南京拉开帷幕。同期召开“分布式电源与电网互动论坛”、“配电关键技术与一二次融合论坛”、“中低压配电柔性互联论坛”三大主题论坛。图1 第十四届配电技术应用大会全球排名前列的电子元器件授权代理商WT文晔科技携手ADI在本次配电技术应用大会上重磅亮相,呈现数字化智能电网解决方案。图2 展会现场文晔于2022年收购了ADI老牌代理商世健,文晔的专业团队加上世健30多年
关键字:
配电网 文晔 ADI 配电技术应用大会
本文提供了设计更高功率TEC之前必须了解的热电冷却器(TEC)概念,解释了限制热电冷却器冷却能力的关键珀尔帖特性,并且说明了可以如何围绕这些限制展开设计。部分驱动器示例说明了控制更高功率TEC所需的条件。另外还包括可能阻碍现有设计实现其预期冷却能力的问题。TEC使用珀尔帖模块来冷却物体或提供物体的准确温度控制,可用于多种应用。它们是激光二极管冷却器、微处理器冷却、聚合酶链反应(PCR)系统以及断层扫描、心血管成像、磁共振成像(MRI)、放射治疗等医疗应用的理想之选。激光二极管温度控制等许多应用都使用功率在
关键字:
ADI 珀尔帖 热电冷却
多相返驰转换器不仅推升了最大可能功率的极限,而且具有容易设计的优点,同时,其所产生的传导干扰也相对更低。返驰转换器是产生受调节电气隔离电压的良好途径。此种电压转换技术的应用层面相当广泛,原因是其电路简单且技术也发展得相当成熟。图一显示返驰转换器的示意简图。 图一 : 不使用光耦合器(no-opto)的返驰转换器然而,返驰式技术在使用上存在许多限制,而其最大传输功率也有其极限,主要是因为在图一所示的Q1开关的导通期间,电流会经过变压器的一次侧。在此期间,能量会储存在变压器的磁芯T1。在Q1的关断期
关键字:
返驰转换器 高功率 ADI
48 V配电在数据中心和通信应用中很常见,有许多不同的解决方案可将48 V降压至中间电压轨。最简单的方法可能是降压拓扑,它可以提供高性能,但功率密度往往不足。使用耦合电感升级多相降压转换器可以大幅提高功率密度,这种方案与先进的替代方案不相上下,同时保持了巨大的性能优势。多相耦合电感的绕组之间反向耦合,因而各相电流中的电流纹波可以相互抵消。这种优势可以用来换取效率的改善,或者尺寸的减小和功率密度的提高等。
关键字:
202408 调节第一级 效率 ADI
adi介绍
ADI技术中心
美国模拟器件公司
Analog Device Instrument
美国模拟器件公司(Analog Devices, Inc. 纽约证券交易所代码:ADI)自从1965年创建以来到2005年经历了悠久历史变迁,取得了辉煌业绩,树立起成立40周年的里程碑。回顾ADI公司的成功历程——从位于美国马萨诸塞州剑桥市一座公寓大楼地下室的简陋实验室开始起步——经过40多年的努力,发展成全世界特许半导体行业 [
查看详细 ]
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473