以下文章来源于面包板社区 ,作者硬件工程师职场生活中经常见到一些成本很低的电子产品,比如手摇式手电筒、usb小风扇。本文作者此次拆了一个随蚊香液送的加热器(电商平台零售2块钱左右就能买到),看看内部到底构造如何?正文几年前,在租的房子里,被蚊子骚扰得不行,就在超市随手买了这种简易的电蚊香液,也不知道是不是有用。电蚊香液用完了,剩下个加热器闲置了。好奇拆开来看下是怎么设计的,究竟什么样的设计能够让它买蚊香液免费送?先上图,颜色搭配挺好看,直接插交流220V电源使用。正面有个按键开关,按下开始加热,有指示灯亮
关键字:
电阻 电路设计
晶振在布局时,一般是不能放置在PCB边缘的,今天以一个实际案例讲解。某行车记录仪,测试的时候要加一个外接适配器,在机器上电运行测试时发现超标,具体频点是84MHz、144MHz、168MHz,需要分析其辐射超标产生的原因,并给出相应的对策,辐射测试数据如下:图1:辐射测试数据1、辐射源头分析该产品只有一块PCB,板子上有一个12MHz的晶体。其中超标频点恰好都是12MHz的倍频,而分析该机器容易EMI辐射超标的屏和摄像头,发现LCD-CLK是33MHz,而摄像头MCLK是24MHz。通过排除法,发现去掉摄
关键字:
晶振 电路设计 PCB
先看一下这个电路:USB外接电源与锂电池自动切换电路设计如果主副输入电压相等,同时要求输出也是同样的电压,不能有太大的压降,怎么设计?这个电路巧妙的利用了MOS管导通的时候低Rds的特性,相比二极管的方式,在成本控制较低的情况下,极大的提高了效率。本电路实现了,当Vin1 = 3.3V时,不管Vin2有没有电压,都由Vin1通过Q3输出电压,当Vin1断开的时候,由Vin通过Q2输出电压。因为选用MOS管的Rds非常小,产生的压降差不多为数十mV,所以Vout基本等于Vin。原理分析1、如果Vin1 =
关键字:
电源 MOS管 电路设计
来源于网络的前辈PCB作品学好PCB设计的方法之一就是通过前辈的作品学习前辈的设计方法和技巧。我们能在前辈的作品中学到元件布局、板层设置、线路布线。板层置1. 信号层(TOP)第一层信号层,又叫顶层,实物打板回来是能够看得见的一层,可以摆放电子元件的一层。由上图可见这层布线比较多。原因之一就是电子元件的摆放在同一层,走线的过程中不需要设置过孔转换层。这样可以避免过孔阻碍其它层的走线。在多层板布线反而要注意过孔的设置。2. 电源层(VCC)在这层没有看到走线。是因为这一层都是电源网络。在设计时使用特定的线进
关键字:
PCB 电路设计
钳位电路在实际的项目应用是非常广泛的,相信很多小伙伴也经常听过这个电路,但是具体咋实现“钳位”,估计都很模糊,今天核桃就和大伙唠唠这个“钳位电路”。假设二极管的正向导通压降为0.6V,我们先看单一一个二极管时的情况,如下图1所示:图1很明显可以知道,当SW1闭合时,由于二极管的正向导通压降为0.6V,故A的电压UA=0.6V。接着再看一下图2所示的图2图1很好理解,但是到了图2,估计很多小伙伴就蒙圈了。心里就犯嘀咕了,为什么UB的电压是3.9V呢?我们知道二极管的正向导通压降为0.6V,这个是前提条件,图
关键字:
钳位电路 电路设计
▲ 本文要分析的电路事情是这样开始的。买了个电动牙刷,几十块钱那种:收到的实物长这样:牙刷手柄上有1个按键和6个LED灯:拆开看看电路板:可以看出,电路板上用的单片机,只有8个脚,却要控制1个按键、6个LED灯、1个震动的马达电机:初看之下,GPIO应该是不够用的。单片机除去电源脚(正极)和GND脚(负极),只剩最多6个GPIO脚。那么是怎么做到够用的?原来,经过巧妙的电路设计,这款电动牙刷实现了用3个GPIO控制6个LED灯,节省了GPIO。这个巧妙的电路如下:6个LED灯为相同的型号,为方便查看,用红
关键字:
LED 驱动电路 电路设计
电源产品在做验证时,经常会遭遇到电磁干扰(EMI)的问题,有时处理起来需花费非常多的时间,许多工程师在对策电磁干扰时也是经验重于理论,知道哪个频段要对策那些组件,但对于理论上的分析却很欠缺。笔者从事开关电源设计多年,希望能藉由之前对策的经验与相关理论基础做个整理,让目前正从事或未来想从事开关电源设计的人员对电磁干扰防制技术能有初步的认识。开关电源的电磁干扰测试可分为传导测试与辐射测试,一般开关电源的传导测试频段是指150K~30MHz之间,而辐射干扰的频段是指30M~300MHz,300MHz之后的频段一
关键字:
EMI 电源 电路设计
下面就 3.3V NPN 三极管驱动有源蜂鸣器设计,从实际产品中分析电路设计存在的问题,提出电路的改进方案,使读者能从小小的蜂鸣器电路中学会分析和改进电路的方法,从而设计出更优秀的产品,达到抛砖引玉的效果。常见错误接法上图为典型的错误接法,当 BUZZER 端输入高电平时蜂鸣器不响或响声太小。当 I/O 口为高电平时,基极电压为 3.3/4.7*3.3V≈2.3V,由于三极管的压降 0.6~0.7V,则三极管射 极电压为 2.3-0.7=1.6V,驱动电压太低导致蜂鸣器无法驱动或者响声很小。上图为第二种典
关键字:
蜂鸣器 电路设计 驱动电路
滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员都十分关心的问题。我们在电源滤波电路上,可以看到各种各样不同容值的电容,比如:100uF、10uF、100nF、10nF等,那么这些参数是如何确定的?在50Hz工频电路中,使用的是普通电解电容器,其脉动电压频率仅为100Hz,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万μF,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主
关键字:
电容 滤波电路 电路设计
上边是485通信自动收发电路,不但要把电路送给你,还要把电路原理给你讲明白了。实测波特率9600不会有问题,但是,波特率115200的话,曾经出现过问题。我们先看看普通的收发电路。普通的485电路,除了“用RXD连接485芯片的RO引脚、用TXD连接485芯片的DI引脚”,还会用一个单片机的普通IO引脚连接到RE、DE引脚上。当单片机要发送数据的时候,控制CTRL为高电平,数据通过TXD发送出去。当单片机要接收数据的时候,控制CTRL为低电平,数据通过RXD接收回来。然而,自动收发,就是不用单片机引脚CT
关键字:
485通信 电路设计
最近在某宝买了一个AC-DC 开关电源,向他要一个原理图,想着哪里坏了可以自己修一修,结果说没有。这我怎么能忍??于是自己就结合网上资料和板子的丝印画出了他的原理图。原理图如下:开关电源基础知识开关电源是利用现代电子电力技术,控制开关管开通和关断的时间比率。维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM) 控制 IC 和MOSFET构成。开关电源的类型线性稳压器所谓线性稳压器,也就是我们所说的LDO,一般有这两个特点:传输元件工作再线性区,它没有开关的跳变。仅限于降压转换。开关稳压器传输器
关键字:
AC-DC 开关电源 电路设计
我们的世界正变得更加智能且紧密相连,楼宇和工厂正以前所未有的方式实现自动化。为了确保这些新系统有效运行,可靠的信息通信至关重要——这不仅体现在工业控制面板内部,也包括遍布整个场所的各种设备之间的通信。直到最近,工业网络还很复杂,可能需要使用各种协议和网关。这可能既昂贵又不可靠,难以确保应有的互联互通能力。然而,随着10BASE-T1S以太网的出现,一场变革正在发生。这一创新标准取代了传统的现场总线技术,为现代网络环境提供了多种优势,并消除了对网关的需求。支持新标准的一系列设备,如安森美的工业10BASE-
关键字:
10BASE-T1S 以太网 控制器
分享几个硬件设计常对于一个从事电子行业工作的朋友来讲,如何快速的成长、入门是一个很头疼的事情,因为很多基础的理论,比较乏味,太过专业的知识,看起来,很是让人伤透脑筋,今天就给大家分享一些,长期积累下来的电路图,供大家学习、收藏。EEPROMLCD1602电路数码管max485红外开关蜂鸣器译码器移位寄存器步进电机控制复位电路下载电路电源模块温度模块红外热敏电阻交通灯时钟555彩屏矩阵按键单片机烧录电路数码管红外发射显示模块红外接收蜂鸣器驱动流水灯usb供电单片机矩阵单片机电路时钟ADC接口电路单片机电源声
关键字:
硬件设计 电路设计
01本次讲解电源以一个13.2W电源为例输入:AC90~264V输出:3.3V/4A原理图:变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的。决定变压器的材质及尺寸:依据变压器计算公式02决定一次侧滤波电容滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。03决定变压器线径及线数当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密
关键字:
电路设计 电源管理
一、开关和放大器MOS管最常见的电路可能就是开关和放大器。1. 开关电路G极作为普通开关控制MOS管。2. 放大电路让MOS管工作在放大区,具体仿真结果可在上节文章看到。二、时序电路中作为反相器使用下图示例电路中,芯片1正常工作时,PG端口高电平。如果芯片1、芯片2有时序要求,在芯片1正常工作后,使能芯片2。可以看到芯片2的使能端初始连接VCC为高电平,当芯片1输出高电平后,(关注公众号:硬件笔记本)MOS管导通,芯片2的使能端被拉低为低电平,芯片2开始正常工作。这时MOS管起到的就是反相的作用。三、双向
关键字:
MOS管 电路设计
大电容充电的“控制器”电路设计介绍
您好,目前还没有人创建词条大电容充电的“控制器”电路设计!
欢迎您创建该词条,阐述对大电容充电的“控制器”电路设计的理解,并与今后在此搜索大电容充电的“控制器”电路设计的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司
京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473