- 在开关电源的设计中,PCB布局设计与电路设计同样重要。合理的布局可以避免电源电路引起的各种问题。不合理的布局可能导致输出和开关信号叠加引起噪声增加、调节性能恶化、稳定性欠佳等。采用恰当的布局可以避免这些问题的发生。1.DC-DC的环流图24-1:开关元件Q1导通时的电流路径如图24-1的红色线表示开关元件Q1导通时流过的主要电流和路径以及方向。Cbypass是高频用去耦电容器,CIN是大容量电容器。开关元件Q1导通的瞬间,流过急剧的电流,其大部分由Cbypass提供,其次由CIN提供,缓慢变化的电流则由输
- 关键字:
PCB 电路设计 DC-DC
- 1.1 目的 原理图设计是产品设计的理论基础,设计一份规范的原理图对设计PCB、跟机、做客户资料具有指导性意义,是做好一款产品的基础。原理图设计基本要求: 规范、清晰、准确、易读。 因此制定此《规范》的目的和出发点是为了培养硬件开发人员严谨、务实的工作作风和严肃、认真的工作态度,增强硬件开发人员的责任感和使命感,提高工作效率和开发成功率,保证产品质量。1.2 基本原则1.2.1 确定需求:详细理解设计需求,从需求中整理出电路功能模块和性能指标要求等1.2.2 确定核心CPU:根据功能和性能需求制定总体
- 关键字:
原理图 电路设计 PCB设计
- 我们知道,在电路系统的各个子模块进行数据交换时可能会存在一些问题导致信号无法正常、高质量地“流通”。例如有时电路子模块各自的工作时序有偏差(如CPU与外设)或者各自的信号类型不一致(如传感器检测光信号)等,这时我们应该考虑通过相应的接口方式来很好地处理这个问题。下面就大概说明一下电路设计中7个常用的接口类型的关键点:01TTL电平接口这个接口类型基本是老生常谈的吧,从上大学学习模拟电路、数字电路开始,对于一般的电路设计,TTL电平接口基本就脱不了“干系”。它的速度一般限制在30MHz以内,这是由于BJT的
- 关键字:
PCB 电路设计 电路设计
- 在设计开关电源电路的PCB时,输入电容的布局和布线至关重要,它直接影响电路的性能、效率和EMI表现。以下是输入电容的PCB设计技巧:1. 尽量靠近功率开关和输入端理由:输入电容的主要作用是为开关管提供瞬态电流,减少电压波动。将输入电容靠近功率开关(MOSFET或IC)和输入引脚,可以最大程度降低寄生电感引起的电压尖峰。做法:将输入电容紧贴Buck控制器或功率开关的VIN和GND引脚。如下图中,case1是中规中矩靠近芯片防止,检测到其辐射的噪声是图中红色的曲线;case2是故意将电容立起来,可以
- 关键字:
PCB 电路设计 开关电源
- 摘要随着各行业对高效完成大批量生产的需求日益增强,构建稳健的测试策略也变得至关重要。此篇是德科技署名文章旨在深入探讨简易电路板生产制造领域中适用的创新测试方法,力求在保障质量的前提下,实现生产效率的最优化。本文探讨了制造商在PCBA(印刷电路板组件)电路板批量测试环节中所面临的种种挑战,并揭示了创新技术如何重塑电子制造业的格局。文章通过聚焦前沿测试方法、先进测试装备及经过优化的精简测试流程,系统阐述了促使PCBA测试理念革新的核心要素。通过这些改进,制造商有望提升测试效率、节约时间与成本、提高工作效率、提
- 关键字:
PCB 电路设计 测试测量
- 01D类100w功放电路介绍一款采用普通元件制作的D类100W功放电路,供广大音响爰好者参考。电路如图1所示。元件选择要点:Ic1选用双D触发器CD4013。IC2选用高速MOSFET驱动电路TC4426,该芯片在4.5V~18V供电范围内均能稳定地工作,其输出驱动电流高达1.5A,而输出阻抗只有7Ω(内部电路如图2所示),因此是驱动数字功放中MOSFET功放管的理想器件。输出管选用NMOS场效应管IRFP140(100V,30A,150W)。D1、D2选用高速肖特基二极管MBR150,如果买不到MBR1
- 关键字:
功率放大器 模拟电路 电路设计
- 分享一个EMI整改文档,对于EMC来说,接触的案例越多,整改的成功率就越高,整改的方法也越多,从案例中吸取教训,总结经验,避免设计中出现同样的问题。注意:按照文档描述,从下面两张图片可以看出470MHz和940MHz(二次谐波)左右,这两个频点的功率非常高,可能该产品是一款无线产品,对于主频--有意辐射频率来说是有豁免权的,所以只需要注意200MHz之前的频段,由于频谱超标带宽较宽,可以肯定非时钟、晶振辐射超标引起,几乎肯定辐射源在电源了,不过最后的结果,电源部分虽然PASS了,但是后面又引起了其他的频点
- 关键字:
EMI 电源 电路设计
- 做了一个3KW碳化硅电源!(全称:碳化硅3KW图腾柱PFC)它能起到什么作用?具体参数是(第1章)?怎么设计出来的(第2章)?实测情况(第3章)?原理是(第4章)?开源网址入口(第5章)?下文一一为你解答!1.基础参数双主控设计:CW32+IVCC1102输入:AC 110V~270V 20Amax输出:DC 350V-430V 20Amax功率:3000W设计功率:3500W效率:98.5%能用在哪些地方?① 可以作为3KW LLC电源或者全桥可调电源的前级PFC环节;②
- 关键字:
碳化硅 3KW 电源 电路设计
- 大家好,我是王工。偶然在网上刷到新手第一次焊电路板的场景,不经感叹时间过得真快,已经过去好多年了,焊的第一块板子应该是在学校时代,已经不记得是什么样子了。下面咱来一起看看新手第一次焊的电路板是什么样子的。同学1:这个有点惨不忍睹,插件应该是最好焊的,这个板子引脚直接都有短路的,而且上锡太多了。关注公众号硬件笔记本同学2:目的是想把板子周边的焊盘,通过飞线引出去,线头上锡多了,烙铁温度也不够,看起来很潦草。同学3:这个贴片电阻歪歪扭扭,焊盘两边也明显上锡多了。同学4:当把所有电阻电容电感全焊完后,以为要把芯
- 关键字:
PCB 电路设计 焊电路板
- 电容是电子电路中最常见的一种元器件,今天为大家分享2种特殊电容:X电容和Y电容。1安规电容安规电容之所以称之为安规,它是指用于这样的场合:即电容器失效后,不会导致电击,也不危及人身安全。安规电容包含X电容和Y电容两种,它普通电容不一样的是,普通电容即使在外部电源断开之后,它内部储存电荷依然会保留很长一段时间,但是安规电容不会出现这个问题。安规电容大多数为蓝色、黄色、灰色以及红色等。1、安规X电容X电容是跨接在电力线两线之间,即“L-N”之间,X电容器能够抑制差模干扰,通常采取金属化薄膜电容器,电容容量是u
- 关键字:
电容 电路设计 EMC
- 在一个电路系统中,时钟是必不可少的一部分。时钟电路相当关键,在电路中的作用犹如人的心脏的作用,如果电路系统的时钟出错了,系统就会发生紊乱,因此在PCB 中设计一个好的时钟电路是非常必要的。我们常用的时钟电路有:晶体、晶振、时钟分配器。有些IC 用的时钟可能是由主芯片产生的,但追根溯源,还是由上述三者之一产生的。接下来结合具体实例,说明时钟电路布局、布线的原则和注意事项。晶体PCB 中常用的晶体封装有:2 管脚的插件封装和SMD 封装、4 管脚的 SMD 封装,常见封装如下图:尽管晶体有不同的规格,但它们的
- 关键字:
PCB 电路设计 晶振
- 布局在设计中,布局是一个重要的环节。布局结果的好坏将直接影响布线的效果,因此可以这样认为,合理的布局是PCB设计成功的第一步。尤其是预布局,是思考整个电路板,信号流向、散热、结构等架构的过程。如果预布局是失败的,后面的再多努力也是白费。1、考虑整体一个产品的成功与否,一是要注重内在质量,二是兼顾整体的美观,两者都较完美才能认为该产品是成功的。在一个PCB板上,元件的布局要求要均衡,疏密有序,不能头重脚轻或一头沉。PCB是否会有变形?是否预留工艺边?是否预留MARK点?是否需要拼板?多少层板,可以保证阻抗控
- 关键字:
PCB 电路设计
- 引言电源里面用量很大的一个元器件,电阻。根据个人的经验,大致的聊下电阻的相关内容,也希望同行提供些资料,一起学习,探讨一下,顺便给新人提供点参考。放电电阻R1,R2,R3,R4的放电电阻取值。IEC60950,IEC60065都有规定放电时间对应放电电压的。X电容超过0.1uF的话基本要加上这4个电阻了。IEC60950规定1s内电压需下降至37%,IEC60065规定2S内电压需降至35V。一般情况都是通过测试去判定,1S内plug端的电压(240VrmsX1.4.1=340Vpeak)下降到初始电压的
- 关键字:
电阻 电路设计
- Boost电路是一种开关直流升压电路,它能够使输出电压高于输入电压。在电子电路设计当中算是一种较为常见的电路设计方式。本文将给大家介绍boost基本原理、电路参数设计。首先我们需要知道:电容阻碍电压变化,通高频,阻低频,通交流,阻直流;电感阻碍电流变化,通低频,阻高频,通直流,阻交流;图1 Boost开关升压电路的原理图假定那个开关(三极管或者MOS管)已经断开了很长时间,所有的元件都处于理想状态,电容电压等于输入电压。下面要分充电和放电两个部分来说明这个电路。充电过程在充电过程中,开关闭合(三极管导通)
- 关键字:
Boost电路 开关电路 电路设计
大电容充电的“控制器”电路设计介绍
您好,目前还没有人创建词条大电容充电的“控制器”电路设计!
欢迎您创建该词条,阐述对大电容充电的“控制器”电路设计的理解,并与今后在此搜索大电容充电的“控制器”电路设计的朋友们分享。
创建词条
关于我们 -
广告服务 -
企业会员服务 -
网站地图 -
联系我们 -
征稿 -
友情链接 -
手机EEPW
Copyright ©2000-2015 ELECTRONIC ENGINEERING & PRODUCT WORLD. All rights reserved.
《电子产品世界》杂志社 版权所有 北京东晓国际技术信息咨询有限公司

京ICP备12027778号-2 北京市公安局备案:1101082052 京公网安备11010802012473