可修正RF信号的RF预失真
较老的调制方法对放大器的线性比较不敏感。AM(调幅)收音机与模拟电视广播都使用AM方式,它依赖的是RF信号的峰值。任何失真对所有峰值都有相同影响,而对所有接收信号的质量影响不大。FM(调频)收音机与模拟电视的音频信号采用的是FM方式,它取决于波形的零交越。因此任何幅度非线性都没有影响。相位失真对零交越有影响,但它们是均匀的效果,不会影响FM调制。
提高RF放大器线性有多种技术。首先,可以采用更好的晶体管。于是,制造商会在RF晶体管生产中采用GaAs(砷化镓)和其它III-V族半导体工艺,即至少一个III族元素和至少一个V族元素组成的化学化合物。另外,还可以尝试用SiGe(硅锗)晶体管,也许再加上CMOS工艺(参考文献2)。虽然SiGe比GaAs慢,噪声也大,但通常也够用了,尤其是在低于3 GHz的频率下。工程师面临着在RF放大器中采用CMOS的压力,因为它的成本低,但CMOS的工作电压低,因此难以在功率放大器中实现。CMOS还有高的噪声系数,降低方法是增加晶体管结构的尺寸,但这种办法也增加了杂散电容,降低了产品的工作频率。RFMD和其它公司提供蓝宝石上做的CMOS,所有晶体管下面都有一个介电隔离层(参考文献3)。这种方法有成本优势,减少了杂散电容。
受市场驱动的现实是,工程师们可以用CMOS制造用于Wi-Fi热点应用的小功率RF放大器。手机需要更特殊的工艺,如SOI(绝缘硅),GaAs将在近期手机基站上占支配地位。
一旦你的功率放大器有了线性良好的晶体管技术,接下来要关注放大器的架构。你可以从一种间断驱动的架构(如Class C型)转换到一种更连续的类型,如Class AB型。Class C的效率高,因为它用一只晶体管驱动一个储能电路,产生出供发射的RF正弦波。但遗憾的是,Class C放大器不适应现代的线性需求,尤其是基站。获得良好线性的一种方式是减少对放大器的驱动,这样晶体管就不会接近饱和,输出电压摆幅就完全处于电源轨的范围内。不幸的是,这种方案的效率最差。
为解决这个问题,可以尝试采用一种Doherty放大器,它是一种复合型设备,使用了一个主通道和一个辅助RF通道,可以在信号强度低时节省功耗,而当需要较高功率时,仍能适应较大的信号摆幅(图4)。Doherty放大器架构运行很好,但它增加了理想的简单放大器级的器件数和复杂性。

如果为了获得效率而要将RF放大器置于饱和状态,则可以尝试用正反馈技术使之线性化。十多年来,RF设计者已成功地将这些技术用于手机基站。现在的问题是,用于4G(第四代)LTE(长期演进)的新调制方法有更高的要求。为了获得更高的带宽效率(以每赫兹比特度量),即便对最好的放大器,这些新的调制方法也提出了困难的线性要求。
这种状况促使工程师们采用预失真(predistortion)技术对RF功率放大器做线性化(参考文献4)。由于这类技术要对天线馈送的输出做采样,并送回输入端,它看起来类似于所有模拟工程师都熟知的反馈技术。但是,预失真并不会给
一个误差放大器提供反馈信号,因为RF信号速度太快,无法将一个真正的载波频率信号回送给误差放大器。预失真采用的是一些算法,它们可精确预测放大器各种工作条件下的效应,从而调节输入信号,使之通过RF功放时有更好的线性。
可以设想一下算法的基础功能。对一个摆幅大到接近电源轨的正弦载波,所有RF放大器都会将其抹平。因此,预失真算法会使这些较大幅度的正弦波有更尖锐的波峰。这样,就可以从放大器获得一个较纯净的正弦波。在时域中很容易看到这种情况。而在频域中,可以将预失真想象成增加某种相位角的谐波成分,它抑制掉非线性RF功放所产生的尖刺。当为一个预失真电路通电时,就可以看到邻道尖刺的幅度大大减小。
通过一个类似想法的实验,也可以看到预失真算法如何补偿一个放大器的相位误差。由于相位误差是可预测和可重复的,算法就可以修改输入波形的时序,以去除任何放大器的滞后。在时域中,可以想象成算法在快速转换速率期间超前于信号,使得放大器最终输出一个干净的正弦波。在频域中,邻道尖刺也达到了可以接受的水平。
现在的预失真算法已足够完备,甚至可以消除热效应带来的失真。高低温对功率晶体管造成的失真是不同的。可以开发出一种算法,预测输出晶体管的功耗。从这个预测中,可以推断出晶体管的温度,然后对输入作适当调节,从而使输出保持为线性。这个算法必须考虑到所用散热器以及周围环境的热时间常数。
数字预失真还是模拟预失真?
过去几年来,手机基站制造商已接受了用数字预失真做放大器线性化的方法(图5与参考文献5)。此时,要用一个单向耦合器对RF输出做采样。可以用一个混频器,将千兆赫水平的信号下变频到一个较低频率。然后就可以用一个快速ADC对波形采样。这些采样被送至一片运行预失真算法的FPGA,用于修正输入波形,还给出一个数字的数据流。然后,FPGA输出RF基带信号或I(索引)和Q(正交)信号,再上变频至手机所在频段的RF载波效率。

建立这一系统的方法有多种(参考文献6)。通过采用独立的ADC和下变频芯片,可以针对需求优化自己的系统,并使用可以从很多供应商获得的标准化部件。例如,Hittite、Analog Devices、德州仪器公司、凌力尔特公司以及Intersil公司(参考文献7)都制造可用于分立数字预失真电路的硅芯片。

评论