最高能效,最低成本: BC²
相位 [t3, t4]本文引用地址:https://www.eepw.com.cn/article/230782.htm
在t3时,功率晶体管关断。这时,COSS电容电压被小线圈L内贮存的电流线性充电,直到二极管D2导通为止;在关断期间,功率开关上没有过压应力。
同时,主线圈上的电压极性发生变化,直到DB 二极管导通为止。一旦所有的二极管一起导通,输出电流按图5所示的方式配流。因为NS2的反射电压的原因,D2 的电流从I1开始降至0 A,dI/dt斜率较低。相反,在t4时,DB 的电流升到标称值。
这种配流有利于BC²电路。事实上,在交流电压较低的功率因数校正应用(例如90 VRMS)中,最高增强电流是在二极管DB 和D1之间机械分配。因此,整流阶段的导通损耗得到改进。下面是反射电压VNS2 和D2 导通时间的计算公式:
tD2_ON时间趋势支持功率因数校正应用,因为Vmains 电压最低时,I1 电流最大。因此,即变在恶劣的条件下,例如,最低Vmains电压下的高输出负载电流,BC²电路仍然能够保证断续模式。此外,为消除二极管D2 的反向恢复电流效应,因为反射电压VNS2低的原因,必须使dI/dt_D2 总是保持低斜率,通过下面公式计算dI/dt_D2:
相位 [t4, t5]
在t4时,D2二极管的电流达到0 A,BC²变成一个传统的功率升压转换器,只有升压二极管DB 导通。因为NS2上的反射电压的原因,功率开关管的电压低于 Vout。因此,COSS电容在体电容内放电。在t0时,晶体管导通,节能电能。
2.3. BC²电路上的电压应力
表1列出了每个相位对应的最大电压。
表1:BC²上的最大反向电压
BC²电路需要使用一个击穿电压高于600V的特殊二极管。此外,还需要优化二极管的反向恢复电流,以防功率晶体管在[t1-t2]相位遭受较高的电流。
意法半导体研制出BC²电路专用的3A、5A、8A、10A和16A的二极管,这些二极管采用不同类型的封装(直插、通孔或贴装)。
意法半导体推出了在一个封装内嵌入两支二极管(图4中的DB和D2)的新产品(STTH10BC065CT和STTH16BC065CT),新产品的额定反向电压值达到650V,散热器用二极管与标准功率因数校正器用二极管完全相同。
为保持这个散热器配置,意法半导体开发出续流二极管D1(STTH3BCF060 and STTH5BCF060),该产品采用贴装或直插式封装,以便将其焊接在印刷电路板上。
针对大功率转换器,意法半导体开发出独立的采用通孔封装的DB 和D2 二极管(STTH8BC065DI 和STTH8BC060D)。
详情联系当地的意法半导体销售处。
2.4. 计算m2 和m1 变压比
为在[t1-t2]和[t3-t4]时序期间符合断续模式,图5所示的时间参数td1和td2应总是正值。根据典型连续导通模式(CCM)功率因数校正规则和tD1_ON 和tD2_ON 表达式,确定变压比条件m1 和 m2 不是难事。
其中PIN 是功率因数校正器的输入功率,Fs是开关频率;VmainsRMS 是RMS电压最大值;IRMmax是在导通dI/dt和最高工作结温条件下的反向恢复电流最大值。
评论