开关变压器之铁芯磁滞损耗分析
本文引用地址:https://www.eepw.com.cn/article/227312.htm
磁滞损耗和后面介绍的涡流损耗是变压器铁芯的主要损耗,这两种损耗是可以通过实验的方法来进行测量的,但要把两种损耗严格分开,在技术上还是有点难度。
顺便指出,上面主要是针对双激式开关变压器铁芯的磁滞损耗进行原理分析,对于单激式开关变压器,由于其磁化曲线只限于磁通密度和磁场强度均为正的一侧,磁通密度变化的范围基本上都在Br和Bm之间,相对来说比较小;当输入直流脉冲电压的幅度和宽度不变时,Br和Bm的相对位置是基本不变的,其磁化曲线与等效磁化曲线(励磁电流的负载曲线)基本重合,因此,磁滞回线的面积接近等于0,变压器铁芯的磁滞损耗也接近等于0,如图2-14所示。
只有当输入直流脉冲电压的幅度和宽度不断地改变时,Br和Bm的相对位置才会跟随输入电压不断地变化,此时,其磁化曲线与等效磁化曲线(励磁电流的负载曲线)不再重合,磁化曲线会不停地上下跳动,磁滞回线的面积也在不停地改变,因此,变压器铁芯的磁滞损耗不能认为等于0。
在图2-14中,虚线B或0-B-B为变压器铁芯的初始磁化曲线;当输入直流脉冲的幅度比较低,或脉冲宽度比较窄时,磁通密度由Br1沿着磁化曲线a-b上升,到达Bm1后脉冲结束,然后磁通密度由Bm1沿着磁化曲线b-a下降回到Br1,虚线1是其等效磁化曲线。
当输入直流脉冲的幅度比较高,或脉冲宽度比较宽时,磁通密度由Br2沿着磁化曲线c-d上升,到达Bm2后脉冲结束,然后磁通密度由Bm2沿着磁化曲线d-c下降回到Br2,虚线2是另一条等效磁化曲线。
因此,当输入直流脉冲电压的幅度和宽度不断地改变时,变压器铁芯的磁通密度就会在1和2两条等效磁化曲线之间对应的磁化曲线上来回变化。
显然,磁通密度从等效磁化曲线1跳到等效磁化曲线2是需要能量的。如图2-14中,假设磁通密度由Br1上升到Bm2,但磁通密度下降时不会返回到Br1,而只能返回到Br2。因此,磁通密度上升与下降的幅度不一样,产生的这个差值就是磁滞损耗。不过,单激式开关变压器铁芯的磁滞损耗相对于双激式开关变压器铁芯磁滞损耗来说,还是很小的,甚至可以忽略。
单激式开关变压器铁芯的磁滞损耗小的原因,是因为流过变压器初级线圈励磁电流的方向不会来回改变,并且当控制开关断开时,流过变压器初级线圈中的励磁电流也被切断,原来励磁电流存储于变压器铁芯中的磁能量会转换成反电动势向负载提供输出;
而双激式开关变压器则相反,流过变压器初级线圈励磁电流的方向会来回改变,原励磁电流存储于变压器铁芯中的磁场能量将被新励磁电流产生的磁场强制退磁,它不会向负载提供能量输出,而只能转化成热能被损耗在变压器铁芯之中。
磁滞损耗在一般变压器铁芯中会引起磁致伸缩,使变压器铁芯产生机械变形和产生振动,并发出声音;有时这种声音还很令人讨厌,特别是产生调制交流声的时候;解决的办法只能改变开关电源的工作频率和控制信号调制包络的频率;如果磁致伸缩的频率与变压器铁芯机械振动(自由震荡)的频率相同,可能还会产生共振,会对变压器造成损伤,这种情况要严格防止发生。
脉冲点火器相关文章:脉冲点火器原理
评论